

Magnetism & Ion Diffusion in Q1D Materials:

A Study by Muons, Neutrons and X-rays

Prof. Martin Månsson

Sustainable Materials Research & Technologies (SMaRT) Department of Applied Physics KTH Royal Institute of Technology

Energy Harvest

Wind turbines

Hydro-power

Solar cells

Geothermal

Electrolysis

Energy "Usage"

PRIUS FCV

Heat/Cool

Batteries

Energy Storage

(Metal, paper, chemical, ...)

Construction

Information & Communications Technology (ICT)

- ICT is estimated to constitute 21% (= 9000 TWh/year) of the global electricity demand by 2030.
- Large server halls and networks are the areas that will increase the most (Al not included!)
- Replacing current RAM with existing MRAM can save almost 90% of the energy consumption.
- How significant is this?

Information & Communications Technology (ICT)

- ICT is estimated to constitute 21% (= 9000 TWh/year) of the global electricity demand by 2030.
- Large server halls and networks are the areas that will increase the most (Al not included!)
- Replacing current RAM with existing MRAM can save almost 90% of the energy consumption.
- How significant is this?
- If we replace all electronics with spintronics we can save 90% of the 9000 TWh = 8000 TWh/year

This actually equals ALL coal power plants OR 3 times ALL nuclear power in the world !!!

Energy Harvest Energy Storage

Energy "Usage"

Energy Harvest

Mixed Halide Perovskites

Energy Harvest

μ[†]SR "Light on/off" (ISIS/EMU)

As. Prof. Yasmine Sassa

Change in Ion-dynamics

H-storage

Energy Storage

Energy Storage

Sustainable Energy & Fuels, 3, 956 (2019) Physical Review B 81, 092103 (2010)

NPD

QENS

in-operando

The Energy Problem

H-storage

Elastic Neutron Scattering (Diffraction) "Carbon Structure"

Quasi-Elastic Neutron Scattering (QENS) "Hydrogen Dynamics"

Carbon, 174, 190 (2021)

Int. J. Hydrogen Energy 47, 34195, (2022)

> Carbon 197, 359 (2022)

Carbon 219, 118799 (2024)

Quantum Materials

Skyrmions

Topological Insulators / Weyl Semimetals

Heavy Fermions

High-T Superconductors

MATERIALS

🛨 SMaRT 👶

Charge

2D (vdW) Materials

Quantum Magnets / Spin Liquids

Energy "Usage"

Multifunctional Materials

Large-scale Infrastructures

Synchrotron X-ray Sources

Neutron Sources

High-energy X-rays

SwedNess

Muon Sources

Low-D (Quasi-1D) Materials

- Ideal 1D antiferromagnet (AF) show no long-range order for T > 0 K (quantum spin fluctuations).
- However, when considering not only the strong intra-chain interactions (J) but also the much weaker inter-chain interactions (J'), long-range AF order can appear.

The family of quasi-1D AF compounds therefore display a wide range of intriguing phenomena due to the delicate competition and/or frustration between J and J.

- The Phospho-olivine compound LiFePO₁ is a 'famous' battery cathode material (extensively studied)
- LFPO Display preferential Li-ion dynamics along the 1D diffusion channels parallel to the b-axis, which makes the Li-ion dynamics sensitive to defects in the diffusion channels.

J. Phys.: Conf. Ser. 2462, 012049 (2023) Phys. Rev. Res. 2, 033161 (2020) ACS Appl. Mat. & Interf. 12, 14, 16243 (2020) Sustainable Energy & Fuels 3, 508 (2019)

Phys. Rev. B 85, 054111 (2012) Phys. Proc. 30, 190 (2012) Phys. Proc. 30, 160 (2012) Phys. Rev. B 84, 054430 (2011)

High-Pressure Materials Synthesis

- High-pressure synthesis allow us to stabilize structures/compounds not accessible by "normal" materials synthesis methods (c.f. diamonds).
- A small volume of starting materials are encapsulated into a very complex container that is placed inside a set of anvils consisting of 8 sintered diamond cubes inside a "split-sphere".

- Using a 30'000 ton press and a furnace, the synthesis can be performed up to 50 GPa and 2000 K.
- Sample volume/mass of final material is usually small, m = 100 mg or less !!!

NaM_2O_4O (M = V, Mn, Ti, Cr)

Family of compounds synthesize by high-P techniqe, which display Q1D channels/chains along the crystallographic b-axis (can also replace/dope Na by Ca). NaV2O4

NaV₂O₄

Orthorhombic Pnma (62)

$$a = 9.1304 \text{ Å}$$

 $b = 2.8844 \text{ Å}$
 $c = 10.6284 \text{ Å}$

$$\alpha = \beta = \gamma = 90^{\circ}$$
 $V = 279.91 \text{ Å}^{3}$
 $Z = 4$
 $M = 188.87 \text{ g/mol}$
 $\rho_{theor} = 4.482 \text{ g/cm}^{3}$

- Belongs to the CaFe₂O₄-type orthorhombic structure having a *Pnma* space group
- Display V₂O₄ double (zig-zag) chains formed by edge-sharing VO₆ octahedra aligned along the b-axis
- Irregular hexagonal 1D channels are formed in which the Na-ions are located (potentially diffuses = Na-ion battery applications?).
- There are two slightly different V-sites = could display a mixed valence state: V^{+3.5}

Bulk Characterizations

- Magnetic susceptibility clearly show that NaV_2O_4 enters an antiferromagnetic (AF) ordered state below $T_N = 140$ K.
- Magnetic anisotropy studies (single crystals) indicates: FM intra-chain (J > 0)
 AF inter-chain (J' < 0)

- The mixed valence of V causes this material to display metallic conductivity down to at least T = 40 mK, i.e. NaV₂O₄ is an AF metal!
- The isostructural CaV_2O_4 compound with V^{+3} is a typical AF insulator with $T_N = 80$ K.

Physical Review Letters 99, 196601 (2007)

NaV_2O_4 : ZF μ^+SR

- Zero-field (ZF) muon measurements are extremely sensitive to small changes in the spin order.
- Our measurements for the parent NaV₂O₄ compound clearly show the appearance of long-range order (muon spin precession = oscillations) below T_{N} .
- Fourier transform clearly show the presence of multiple frequencies indicating either several muon stopping sites and/or a complex magnetic structure.

- **Indications for spin re**orientations (SR) below T_{N} (number of frequencies are reduced).
- However, this could also be a subtle structural transition that changes the muon sites !!!
- Other Techniques Needed

Synchrotron X-ray Powder Diffraction

- We performed synchrotron measurements at PSI / SLS / MS-beamline in order to search for subtle structural changes around and below T_N.
- We find no clear evidence of such structural transitions and the reduction in muon frequencies is most likely related to changes within a complex spin structure.

Physical Review B, 81, 100410(R) (2010)

Neutron Powder Diffraction

- We performed neutron powder diffraction at PSI / SINQ / HRPT & DMC (thermal & cold) in order to gain further information on the spin structure and magnetic order parameter.
- A series of AF peaks clearly appears below T_N and we are able to find a good fit to the data where magnetic peaks are indexed by an incommensurate propagation vector $\mathbf{k} = [0, 0.191, 0]$ i.e. along the b-axis = chain direction!

Magnetic Order Parameter & Spin Structure

- The magnetic order parameter obtained from temperature dependence of the neutron Bragg peak intensities clearly matches our previous results from muon spin rotation/relaxation.
- Order parameter is well fitted to a BCS typ equation, which is reasonable for a spin density wave (SDW) scenario.
- This is in perfect agreement to our NPD fits indicating an incommensurate (IC-) SDW along the b-axis, k = [0, 0.191, 0]

Note, this means:

Intra-chain (J) AF Inter-chain (J') FM

Opposite to what was previously indicated by bulk magnetic measurements !!!

Physical Review B 82, 094410 (2010)

- With the knowledge concerning spin structure from NPD we can now go back to our muon data.
- Using XRD data + electrostatic potential calculations we obtain the muon stopping sites inside the lattice.
- Applying the spin structure and ratio between the different oscillation frequencies allow us to check for subtle details in the spin structure.
- We find that the simple linear IC-SDW model does not fully fit our muon data.
- We instead find that a helical IC-SDW (with same propagation vector) is more probable.

Electronic Band Structure - ARPES

- We used synchrotron ARPES to study of the electronic band structure of NaV₂O₄ single crystals.
- Crystals are tiny (500 μm) that needs to be cleaved inside UHV chamber for fresh surface (ARPES is an extremely surface sensitive technique, 5 Å !!!)
- For this purpose we used a specially designed in situ sample cleaver.
- ARPES data was acquired using 100 eV photons with circular polarization. T = 10 K and $p = 10^{-11} \text{ mbar (UHV)}$.
- Data was reproduced using 3 different single crystals.

SAMPLE

Månsson, Rev. Sci. Instr. 78, 076103 (2007)

Initial PES data

Angle-integrated PES data clearly show broad features corresponding to the O-2p and V-3d bands.

This is coherent with what is expected from theoretical DOS calculations.

Further, it is clear that the sample is metallic at 10 K (as expected) since we have a sharp step function at the Fermi level (E_F)

Journal of Electron Spectroscopy and Related Phenomena 224, 79 (2018)

ARPES Data

- We also recorder the very first ARPES data from NaV₂O₄, showing clear dispersing electronic bands crossing the Fermi level that are visble both in 2D map and MDC.
- By performing several measurements for different crystal orientations we were able to map out the Fermi surface.
- As expected from the crystal structure, the Fermi surface is highly 1D in its nature, indicating strong nesting (SDW!)

Y. Sassa, M. Månsson, et al., Publication in Progress (2025)

Nesting Vector

- The nesting vector can be extracted from the Fermi surface as $q = [0 \ 0.39 \ 0]$ in units of π/b .
- Translated to propagation vector this equals $k = [0 \ 0.195 \ 0]$, which is almost exactly the same as obtained from NPD

Physical Review B, 81, 100410(R) (2010)

Y. Sassa, M. Månsson, et al., Publication in Progress (2025)

Ion Diffusion by μ*SR

Sugiyama and Mansson Phys. Rev. Lett. 103, 147601 (2009) Phys. Scr. 88 068509 (2013)

- Muons are very sensitive probes of local internal fields
- In the paramagnetic state, muons feel mainly the random nuclear dipole fields (of Li) $\rightarrow \Delta$
- Implanted μ^{\dagger} bind strongly to O within the crystal lattice
- If Li-ions are immobile the mSR time-spectrum is described by a static Kubo-Toyabe function

If ion-diffusion is present, the muons will detect a dynamic contribution to the dipole field.

- Data is now described by a dynamic KT function that includes the parameter: ion hopping rate (v)
- From T-dependence v(T), the ion self-diffusion coefficient (D_{ton}) is extracted

Na-ion Diffusion in NaV₂O₄ by µ⁺SR

- 1.2 g powder sample pressed into a 1.5 mm thick sample pellet
- Introduced into a \emptyset = 25 mm Titanium cell with thin kapton window and Ag O-ring sealing.
- A series of μ^{\dagger} SR spectra are collected at each temperature \rightarrow global fit = robust results for Na-ion hopping rate: $\sqrt{7}$

- \circ \vee (T) show exponential increase for T > 250 K, thermally activated process.
- Fits well to an Arrhenius type equation for diffusion.
- Can extract an activation energy for the diffusion process: $E_a = 225 \text{ meV}$

Na-ion Diffusion in NaM₂O₄ by μ⁺SR

- Similar studies of Na-ion diffusion have been performed also for the entire NaM,O₄ series
- ullet We find a strong dependence on the activation energy with M, where the Mn compound seems to be the most interesting for application point of view.

Introducing Ca "defects"

- The compounds containing Na and Ca can be of interest for both spin order and ion diffusion.
- A complex magnetic phase diagram is found by $\mu^{\dagger}SR$ (AF Metal \Rightarrow AF Insulator !!!).
- The addition of Ca into the Q1D Na-ion channels can be seen as point defects (c.f. LFPO)
- Ca has no nuclear moment "invisible" to the muons i.e. ideal setup for such studies

Defects in 1D ion-diffusion Channels

μ[†]SR

$\mu^{\dagger}SR$

Defects in 1D ion-diffusion Channels

NPD

Dr. Elisabetta Nocerino

Modeling

Sustainable Energy & Fuels

 $Na_xCa_{1-x}Cr_2O_4$

NORDITA The Nordic Institute for Theoretical Physics

Carl Tryggers Stiftelse för Vetenskaplig Forskning

Professor Martin Månsson -

https://www.musr.org/membership