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Informa�on & Communica�ons Technology (ICT)

Large server halls and networks are the areas that will increase the most ( )AI not included!

N. Jones, Nature 561, 163 (2018)

Replacing current RAM with existing MRAM can 
save almost 90% of the energy consumption.

How significant is this?

ICT is estimated to constitute 21% (= 9000 TWh/year) of the global electricity demand by 2030.
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Informa�on & Communica�ons Technology (ICT)

ICT is estimated to constitute 21% (= 9000 TWh/year) of the global electricity demand by 2030.

Large server halls and networks are the areas that will increase the most ( )AI not included!

N. Jones, Nature 561, 163 (2018)

Replacing current RAM with existing MRAM can 
save almost 90% of the energy consumption.

How significant is this?

If we replace all electronics with spintronics we 
can save 90% of the 9000 TWh = 8000 TWh/year

This actually equals ALL coal power
plants OR 3 times ALL nuclear power
in the world !!!
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Energy Harvest
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Energy Harvest

The Energy Problem
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Energy Storage

The Energy Problem
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Energy Storage

The Energy Problem

H-storage

+
m SR

in-operando

Sustainable Energy & Fuels, 3, 956 (2019)
Physical Review B 81, 092103 (2010)
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Energy Storage

The Energy Problem
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The Energy Problem

Energy “Usage”
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Mul�func�onal Materials
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Large-scale Infrastructures
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Low-D (Quasi-1D) Materials

a

b

c

LiFePO4

+ 1D Li  diffusion channels
along the b-axis

DefectsLi

FeO

PO

b

c

J

J’

Ideal 1D antiferromagnet (AF) show no 
long-range order for T > 0 K
(quantum spin fluctuations).

However, when considering not only the 
strong intra-chain interactions ( ) but  also  J 
the much weaker inter-chain interactions 
(  ), long-range AF order can appear.J’

The Phospho-olivine compound LiFePO  is a 4

‘famous’ battery cathode material (extensively 
studied)

LFPO Display preferential Li-ion dynamics along 
the 1D diffusion channels parallel to the b-axis,
which makes the Li-ion dynamics sensitive to 
defects in the diffusion channels.

The family of quasi-1D AF compounds
therefore display a wide range of intriguing 
phenomena due to the delicate competition 
and/or frustration between  and .J J’

J. Phys.: Conf. Ser. 2462, 012049 (2023)
Phys. Rev. Res. 2, 033161 (2020)
ACS Appl. Mat. & Interf. 12, 14, 16243 (2020)
Sustainable Energy & Fuels 3, 508 (2019)

Phys. Rev. B 85, 054111 (2012)
Phys. Proc. 30, 190 (2012)
Phys. Proc. 30, 160 (2012)
Phys. Rev. B 84, 054430 (2011)
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High-Pressure Materials Synthesis

High-pressure synthesis allow us to stabilize structures/compounds not accessible by “normal”
materials synthesis methods (c.f. diamonds). 

A small volume of starting materials are encapsulated into a very complex container that is placed
inside a set of anvils consisting of 8 sintered diamond cubes inside a “split-sphere”.

Using a 30'000 ton press and a furnace, the synthesis can be performed up to 50 GPa and 2000 K.

Sample volume/mass of final material is usually small,  or less !!!m = 100 mg



Professor  Mart in Månsson     -     KTH   Royal Inst i tute of Technology     -     condmat@kth.se

Na ₂O₄O (  = V, Mn, Ti, Cr)M M

Family of compounds synthesize by high-P techniqe, which display Q1D channels/chains along 
the crystallographic b-axis (can also replace/dope Na by Ca).

Belongs to the CaFe O -type orthorhombic 2 4

structure having a Pnma space group

c
b

a

NaV O2 4

Orthorhombic
Pnma (62)

a =   9.1304 Å
b =   2.8844 Å
c = 10.6284 Å

a = b = g = 90°
3

V = 279.91 Å
Z = 4
M = 188.87 g/mol

3r  = 4.482 g/cmtheor

Na

V
IIO₆

I
V O₆

Display V O  double (zig-zag) chains formed 2 4

by edge-sharing VO  octahedra aligned6

along the b-axis

Irregular hexagonal 1D channels are formed 
in which the Na-ions are located (potentially 
diffuses = ).Na-ion battery applications?

There are two slightly different V-sites = 
+3.5

could display a mixed valence state: V

NaV₂O₄
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Bulk Characterizations

Magnetic susceptibility clearly show that NaV O2 4

enters an antiferromagnetic (AF) ordered state
below T  = 140 K.N

T  = 140 KN

Physical Review Letters 99, 196601 (2007)

The mixed valence of V causes this material to
display metallic conductivity down to at least
T = 40 mK, i.e.  !NaV O  is an AF metal2 4

Magnetic anisotropy studies (single crystals)
indicates:  FM intra-chain ( ) J > 0 
                   AF inter-chain ( )J’ < 0 

+3The isostructural CaV O  compound with V  is2 4

a typical AF insulator with T  = 80 K.N
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NaV₂O₄: ZF m⁺SR

Zero-field (ZF) muon measurements are extremely sensitive to small changes in the spin order.
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Our measurements for the parent NaV O  compound clearly show the appearance of long-range2 4

order (muon spin precession = oscillations) below T .N

Fourier transform clearly show the presence of multiple frequencies indicating either several
muon stopping sites and/or a complex magnetic structure.

Indications for spin re-
orientations ( ) below SR
T  (number of frequenciesN

are reduced).

However, this could also
be a subtle structural
transition that changes
the muon sites !!!

Other Techniques Needed
Physical Review B 78, 224406 (2008)

SR?
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Synchrotron X-ray Powder Diffraction

We performed synchrotron measurements at PSI / SLS / MS-beamline in order to search for
subtle structural changes around and below T .N

 

   

 
!

 

We find  of such structuralno clear evidence
transitions and the reduction in muon frequencies
is most likely related to changes within a complex
spin structure.

 
 

 
 

 

Physical Review B, 81, 100410(R) (2010)
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Neutron Powder Diffraction

We performed neutron powder diffraction at PSI / SINQ / HRPT & DMC (thermal & cold) in order
to gain further information on the spin structure and magnetic order parameter.
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A series of AF peaks clearly appears below T  and we are able to find a good fit to the dataN

where magnetic peaks are indexed by an incommensurate propagation vector k =  [0, 0.191, 0]
i.e. along the b-axis = chain direction !

Physical Review B, 81, 100410(R) (2010)
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Magnetic Order Parameter & Spin Structure

The magnetic order parameter obtained from temperature dependence of the neutron Bragg peak 
intensities clearly matches our previous results from muon spin rotation/relaxation. 
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Order parameter is well fitted to a BCS typ equation, which is reasonable for a spin density
wave (SDW) scenario.

This is in perfect agreement to our NPD fits indicating an incommensurate (IC-) SDW along the
b-axis,  k = [0, 0.191, 0]
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m⁺SR - Revisited

With the knowledge concerning spin structure
from NPD we can now go back to our muon
data.

m
o

m
e

n
t

o
ri

e
n

ta
ti

o
n

m
o

m
e

n
t

si
ze

b

c

a l » 5b

0.15

0.10

0.05

0.00

-0.05

A
sy

m
m

e
tr

y

0.40.30.20.10.0
Time (µs)

Helical Linear

Using XRD data + electrostatic potential
calculations we obtain the muon stopping
sites inside the lattice.

Applying the spin structure and ratio
between the different oscillation
frequencies allow us to check for
subtle details in the spin structure.

We find that the simple linear IC-SDW
model does not fully fit our muon data.

We instead find that a helical IC-SDW
(with same propagation vector) is more
probable.

Physical Review B 82, 094410 (2010)
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Electronic Band Structure - ARPES

We used synchrotron ARPES to study 
of the electronic band structure of 
NaV O  single crystals.2 4

Crystals are tiny (500 mm) that needs to 
be cleaved inside UHV chamber for 
fresh surface (ARPES is an extremely 
surface sensitive technique, 5 Å !!!)

For this purpose we used a specially
designed in situ sample cleaver.
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SPACERS

SAMPLE-
PLATE
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SAMPLE-CARRIER
0 5 10

(mm)

2.5 mm
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Månsson, Rev. Sci. Instr. 78, 076103 (2007)

ARPES data was acquired using 100 eV photons with 
-11circular polarization. T = 10 K and p = 10  mbar (UHV).

Data was reproduced using 3 different single crystals.
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Initial PES data

Angle-integrated PES data clearly show
broad features corresponding to the O-2p 
and V-3d bands.
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This is coherent with what is expected 
from theoretical DOS calculations.

Further, it is clear that the sample is
metallic at 10 K (as expected) since 
we have a sharp step function at the 
Fermi level (E )F

Journal of Electron Spectroscopy and Related Phenomena 224, 79 (2018)
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ARPES Data
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We also recorder the very first 

ARPES data from NaV O , 2 4

showing clear dispersing 
electronic bands crossing the 
Fermi level that are visble both 
in 2D map and MDC.

By performing several 
measurements for different 
crystal orientations we were 
able to map out the Fermi
surface.

As expected from the crystal
structure, the Fermi surface is 
highly 1D in its nature, indicating 
strong nesting (SDW!)

Y. Sassa, M. Månsson, et al., Publication in Progress (2025)
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Nesting Vector

The nesting vector can be extracted from
the Fermi surface as  in q = [0 0.39 0]
units of .p/b

Translated to propagation vector this
equals , which is almostk = [0 0.195 0]
exactly the same as obtained from NPD
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Y. Sassa, M. Månsson, et al., Publication in Progress (2025)Physical Review B, 81, 100410(R) (2010)
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Ion Diffusion by m⁺SR

Muons are very sensitive probes of local internal fields
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In the paramagnetic state, muons feel mainly the random 
nuclear dipole fields (of Li) ® D

+ -
Implanted m  bind strongly to O  within the crystal lattice

If Li-ions are immobile the mSR time-spectrum is described
by a static  functionKubo-Toyabe

If ion-diffusion is present,
the muons will detect a
dynamic contribution to 
the dipole field.

Data is now described by a dynamic KT function that includes the
parameter: ion hopping rate (n)

From T-dependence n(T), the ion self-diffusion coefficient ( )Dion

is extracted

Sugiyama and Mansson
Phys. Rev. Le�. 103, 147601 (2009)

Phys. Scr. 88 068509 (2013)
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Na-ion Diffusion in NaV₂O₄ by m⁺SR

1.2 g powder sample pressed into a 1.5 mm thick sample pellet
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Introduced into a Æ = 25 mm Titanium cell with thin kapton
window and Ag O-ring sealing.

+A series of m SR spectra are collected at each temperature  ®
global fit = robust results for Na-ion hopping rate: n(T)

n(T) show exponential increase for
T > 250 K, thermally activated process.

Fits well to an Arrhenius type equation
for diffusion.

Can extract an activation energy for
the diffusion process:  E  = 225 meVa
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Similar studies of Na-ion diffusion have been performed also for the entire NaM O  series2 4

Na-ion Diffusion in Na ₂O₄ by m⁺SRM
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We find a strong dependence on the activation energy with , where the Mn compoundM
seems to be the most interesting for application point of view.
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Introducing Ca “defects”

The compounds containing Na and Ca can be of interest for both spin order and ion diffusion.

The addition of Ca into the Q1D Na-ion channels can be seen as point defects (c.f. LFPO)

Ca has no nuclear moment   “invisible” to the muons i.e. ideal setup for such studiesÞ

Na

Ca
AF

INSULATOR
AF

METAL

Physical Review B 78, 224406 (2008)

+A complex magnetic phase diagram is found by m SR   (AF Metal Þ AF Insulator !!!).
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Defects in 1D ion-diffusion Channels

Na Ca Cr Ox 1-x 2 4

+m SR

MoreCa
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Defects in 1D ion-diffusion Channels
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