

CEPC Scintillator-Steel HCAL: cost estimates

Yong Liu (IHEP) Nov. 13, 2019

Scintillator-Steel Hadron Calorimeter: AHCAL

ILD-like AHCAL

Barrel segments

Detector Units

Scintillator-Steel Hadronic Calorimetry is conventionally referred to Analogue HCAL (AHCAL)

Based on the Table III-7.3 (page 306) in Ref. [1]

Material	Cost (EUR in 2018) [*]	Comments (in 2013)
Stainless Steel	5 /kg	processing costs to be added (1-4 EUR/ kg)
Photosensor (e.g. SiPM)	1 /piece	based on manufacturer extrapolation, current price 7-10 EUR/piece
Front-End Electronics (ASIC)	0.22 – 0.25 /ch	Current price 0.5 EUR/ch
PCB	1800 /m²	for AHCAL extrapolated from the CALICE AHCAL prototype price of 10800/m ²

[*] As quoted in Page 135 in Ref. [2]: The DBD costing had been made in an "ILC currency", the ILCU, in an effort to have a costing coherent between ILD, SiD and the accelerator.... 1 DBD ILCU turns out to be equivalent to 1 Euro(2018).

AHCAL: geometry and #channels

AHCAL detector unit: 30×30×3mm³

Configurations	AHCAL in ILD		AHCAL for CEPC		
Model	IDR-S	IDR-L (DBD in TDR)	CDR Baseline	Depth for 380GeV	
Barrel R_in	171.5 cm	1.5 cm 205.8 cm		205.8 cm [*]	
Barrel Depth	128.7 cm, 48 layers		40 layers	48 layers	
Barrel Segments	2 in Z, 16 in phi; z_max=235 cm		idem		
Barrel #channels	3.73 M	4.27 M	3.59 M	4.27 M	
Endcap R_max	287.6 cm	322.6 cm	301.2 cm	322.6 cm	
Endcap R_min	35 cm		40 cm		
Endcap Depth	128.7 cm, 48 layers		40 layers	48 layers	
Endcap Segments	16 in phi; 2 endcaps		idem		
Endcap #channels	2.74 M	3.44 M	2.49 M	3.43 M	
Total #channels	6.47 M	7.71 M	6.08 M	7.70 M	

[*] CEPC CDR: SiW-ECAL inner radius R=184.3 cm, with a total depth of 24X0 (30 sampling layers, the first 20 layers with 2.1mm W, 10 with 4.2mm W); 0.5mm thick silicon layer; 2.1mm 14-layer PCB (CALICE SiW prototype); no cooling plates yet. This value 205.8 cm is taken from Ref [1], the same as ILD.

Cost breakdown for an HCAL option: AHCAL for CEPC

ltem	Cost (M€) for CDR baseline [*]	Cost (M€) for 380 GeV	ltem	Cost (M€) for CDR baseline [*]	Cost (M€) for 380 GeV
Absorber	4.1	5.2	ASIC	1.4	1.8
Module production	2.7	3.4	Readout Board	10.4	13.2
Cassettes	1.7	2.1	Readout	1.8	2.3
Scintillators	1.2	1.5	Cabling, connections	0.8	1.0
Reflective Foil	0.9	1.2	HV/ LV supplies	0.8	1.0
Photosensor (SiPM)	6.1	7.7	Tooling, testing	0.5	0.5
Cooling system[**]	1.4	1.8	Assembly, installation	2.8	2.8
			DAQ	0.2	0.2
Sum AHCAL	36.7	45.7			

[*] The cost is estimated with a simple scaling law by applying the unit price for each of most items. Note that there are still a few items that may not be scaled (at least non-trivial at the current CDR knowledge level). [**] The cooling is estimated for passive cooling; CMS-HGCAL ~7M CHF for ~1k m² area cooling with dual-phase CO2

AHCAL cost reduction: further R&D and investigations

- Photosensor
 - A new option for SiPMs from a local Chinese vendor (Novel Device Lab, aka NDL)
 - Can be a significant cost saver
- Front-end electronics
 - Currently no existing ASIC that is designed and verified for the PFA calorimeters at CEPC (continuous working mode, fast readout, minimal dead time).
 - Thus no solid information on the power consumption, but only knowledge from ASICs designed for ILD at ILC. Further info could be learned from the "HGCROC" for CMS HGCAL.
 - Requires further R&D, especially in China
 - Can be a significant cost saver
- Active cooling system
 - The current cost estimate of cooling is from ILD, which requires no active cooling. So this part
 can be very likely to be significantly underestimated.
 - Need thorough R&D studies in a scalable way towards the final system level, and identify the items that can not be scaled.

[*] Disclaimers: these are my personal remarks and understandings. All the errors are mine.

Notes and references

- Notes
 - The cost estimate of scintillator-steel HCAL for CEPC is based on the ILC TDR for the ILD detector, as these two designs are very similar.
 - PFA-calorimetry prototyping within the CALICE collaboration provides solid inputs for the cost estimate of ILD calorimetry (also for the detector for CLIC, aka "CLICdet")
- References
 - 1. The International Linear Collider Technical Design Report Volume 4: Detectors, 2013
 - https://arxiv.org/abs/1306.6329
 - 2. The International Large Detector (ILD) IDR (ILD Design Report), 2019
 - Only draft version available till now, to be reviewed within the ILD collaboration
 - <u>https://confluence.desy.de/display/ILD/The+ILD+Design+Report%2C+IDR</u>
 - 3. Cost estimate for CLICdet, 2018
 - https://edms.cern.ch/document/2027873
 - 4. CEPC Conceptual Design Report, 2018
 - <u>http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf</u>

Cost breakdown for an HCAL option: AHCAL in ILD

Item	Cost (kEUR)	Item	Cost (kEUR)
Absorber	5200	ASIC	1800
Module production	3400	Readout Board	13200
Cassettes	2100	Readout	2300
Scintillators	1500	Cabling, connections	1000
Reflective Foil	1200	HV/ LV supplies	1000
Photosensor (e.g. SiPM)	7700	Tooling, testing	500
Cooling system	1800	Assembly, installation	2800
		DAQ	200
Sum AHCAL	45700		

48 layers in the longitudinal direction of the AHCAL (corresponding to $6\lambda_I$) in ILD has been chosen in order to maintain the performance at 1 TeV, where typical jet energies are up to 250 GeV.