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Abstract Généralisation of inequalities invo]/ing trace of matrices 

to von Neumann algebras not having traces in gênerai is 

discussed. 

§1 · Introduction 

There are some well-known useful inequalities involving the 

trace of matrices: Let A* = A,  * =  ,   j> 0,   > 0 and   

be finite matrices. 

(i) Golden-Thompson inequality ( [ 1 5 ] , [22]): 

4. / A B N ^ . A+B /   ,, χ tr(e e ) > tr e . ( 1 . 1 ) 

(ii) Peierls-Bogolubov inequality ( [ 1 1 ] , [ 1 8 ] ) 

tr e A + B > (tr eA)exp{tr(eAB)/tr e A } . ( 1 . 2 ) 

(iii) Powers-St<j>rmer inequality ( [ 1 9 ] ) : 

Il   - ο J t r > | p 1 / 2 -  1 / 2   2 _ S ! . (1.3) 

* An expanded version of the talk given at Vingtième Rencontre 
entre Physiciens Théoriciens et Mathématiciens at Strasbourg, 
May 22-24, 1975-

Inequalities in Von Neumann Algebras

Araki, Huzihiro

Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 22 (1975) , 
Exposé no. 1, 25 p.

http://www.numdam.org/item/RCP25_1975__22__A1_0.pdf
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• The relative Tomita operator: 


      let  and  be both cyclic and separating (normalized) 
vectors for the local observable algebra  and its commutant 

, the relative Tomita operator  for the algebra  is 
defined by 


for .

|Ψ⟩ |Φ⟩
𝔄(𝒰)

𝔄(𝒰)′ SΨ|Φ 𝔄(𝒰)

∀ a ∈ 𝔄(𝒰)

SΨ|Φ (a |Ψ⟩) = a† |Φ⟩
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SΨ|Φ (a |Ψ⟩) = a† |Φ⟩

• The relative Tomita operator 

1.   is separating , the definition is consistent


2.   is cyclic  is defined on a dense subset of 


3. The condition  is also cyclic and separating makes sure the  is 
also well-defined, and .


4.  


5.  

|Ψ⟩ ⇒ SΨ|Φ |0⟩ = 0

|Ψ⟩ ⇒ SΨ|Φ ℋ

|Φ⟩ SΦ|Ψ
SΦ|ΨSΨ|Φ = 1

S′ Ψ|Φ = S†
Ψ|Φ

SΨ|Φ |Ψ⟩ = |Φ⟩
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• The relative modular operator and modular conjugation 

1. The relative modular operator  is positive semidefinite, 
and is positive definite iff  is invertible 


2. If , .


3. The relative modular conjugation is defined by 


4. If  is not separating, then  has a kernel, which is the same to 
the kernel of .  is defined to annihilate this kernel.


5. If  is not cyclic, then the image of  is not dense. Then  is 
an antiunitary map from the orthocomplement of the kernel of  to 
its image.

ΔΨ|Φ = S†
Ψ|ΦSΨ|Φ

SΨ|Φ

|Φ⟩ = |Ψ⟩ ΔΨ|Ψ = ΔΨ

SΨ|Φ = JΨ|ΦΔ1/2
Ψ|Φ

|Φ⟩ SΨ|Φ
ΔΨ|Φ JΨ|Φ

|Φ⟩ SΨ|Φ JΨ|Φ
SΨ|Φ
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• Relative entropy in classical information theory: Kullback-Leibler 
divergence (1951)
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DKL(P∥Q) = ∫E
p(x)(log p(x) − log q(x)) dx
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• Relative entropy in classical information theory: Kullback-Leibler 
divergence (1951)


• “A degree of surprising” : an example, distributions on 
n-state.
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CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA, IV
(ENTROPY AND INFORMATION)

BY HISAHARU UMEGAKI

1. Introduction.

The theory of information, created by Shannon [23], is developed by Fein-
stein, Kullback, MacMillan, Wiener and other American statisticians (e. g., cf.
[10]), and also advanced into the ergodic theory by Gelfand, Khinchin, Kolmo-
gorov, Yaglom and other Russian probabilists (e. g., cf. [8]). Through recent
years, the theory is regarded as a new chapter in the theory of probability.

Recently, Segal [22] gave a mathematical formulation of the entropy of
state of a von Neumann algebra, which contains both the cases for the theory
of information and the theory of quantum statistics. Segal's theorem was re-
formulated in operator algebraic form by Nakamura and Umegaki [16] and
independently by Davis [3].

Since the summer in 1954, Nakamura and Umegaki have investigated the
concept of the conditional expectation in von Neumann algebra as a non-
commutative extension of probability theory (cf. for example [13~18] and [25
~28]), and in the most recent paper [18] it was applied to the theory of mea-
surements of quantum statistics which is regarded as a non-commutative case
of the theory of entropy and information. Furthermore, it may be very inter-
sesting to develope the theory of information under functional-analysistic and
operator-theoretic methods. From these points of views, we shall discuss the
measure of information of integrable operators or of normal states of a von
Neumann algebra. Davis [3] has independently studied on the almost same
theme with Nakamura-Umegaki [16] and [18], in which he developed the theory
of entropy and he simplified the proof of the theorem relative to the operator-
entropy.

Now, we shall give the basic notations and describe the fundamental concepts
in a von Neumann algebra which will be used throughout the present paper.

Let A be a von Neumann algebra, that is, A is a weakly closed self-adjoint
algebra of bounded operators acting over a complex Hubert space H, which
contains the identity operator 7. A linear functional p of A is said to be positive
if p(aa*) ^ 0 for every a Â A. Such p is said to be state if p(I) = 1, to be normal
in the terminology of Dixmier [4] if p(aa)tp(a) for aa^a, and to be trace if p(ab)
= p(ba) for every pair ·, b Â A. The normality of state is equivalent to the
complete additivity: ” p(pa) = p(” Pa) for any disjoint family of projections
{pa}aA (cf. Dixmier [4]).
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寿春，1962)
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{pa}aA (cf. Dixmier [4]).
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Because  is dense in the Hilbert space, one can define linear 
unitary operator  for .

a |Ψ⟩
a′ : a |Ψ⟩ ↦ a |Φ⟩ ∀ a ∈ 𝔄(𝒰)

 is linear  is lineara ⇒ a′ 

 is bounded, so can be defined on the whole Hilbert spacea′ 

∀ a, b, c ∈ 𝔄(𝒰), ⟨cΨ |aa′ |bΨ⟩ = ⟨cΨ |aa′ b |Ψ⟩ = ⟨a†cΨ |bΦ⟩



• Basic properties of the relative entropy


3.  is always non-negative.𝒮Ψ|Φ(𝒰)
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Because  is dense in the Hilbert space, one can define linear 
unitary operator  for .

a |Ψ⟩
a′ : a |Ψ⟩ ↦ a |Φ⟩ ∀ a ∈ 𝔄(𝒰)

 is linear  is lineara ⇒ a′ 

 is bounded, so can be defined on the whole Hilbert spacea′ 
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• Basic properties of the relative entropy


3.  is always non-negative. It is zero iff there is an unitary  
operator  satisfies  
𝒮Ψ|Φ(𝒰)

a′ ∈ 𝔄(𝒰)′ |Φ⟩ = a′ |Ψ⟩
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𝒮Ψ|Φ(𝒰) = − ⟨Ψ | log ΔΨ|Φ;𝒰 |Ψ⟩

• The positivity of relative entropy is a very important.


• Another key property of relative entropy is monotonicity.



• Monotonicity of relative entropy
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• Monotonicity of relative entropy:


      If , then�̃� ⊂ 𝒰
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𝒮Ψ|Φ(�̃�) = − ⟨Ψ | log ΔΨ|Φ;�̃� |Ψ⟩ ⩽ 𝒮Ψ|Φ(𝒰) = − ⟨Ψ | log ΔΨ|Φ;𝒰 |Ψ⟩



• Monotonicity of relative entropy


- The monotonicity is a direct consequence of the relation


- What does it mean? And why is it sufficient?
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• Monotonicity of relative entropy


- The monotonicity is a direct consequence of the relation


- Positive operator: a self-adjoint operator  is called positive iff 
 for any ;


- If  and  are both bounded self-adjoint operators,  means 
;


- How about generic  and ?

P
⟨ψ |P |ψ⟩ ⩾ 0 |ψ⟩ ∈ ℋ

P Q P ⩾ Q
P − Q ⩾ 0

P Q
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• Monotonicity of relative entropy


- If ,


- Proof: “ ”, consider a (one-real-parameter) family of operators 
, then , and

P, Q ⩾ 0

⇒
R(t) = tP + (1 − t)Q, t ∈ ℝ ·R = dR /dt = P − Q ⩾ 0
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1

s + P
⩽

1
s + Q
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- If ,


- Proof: “ ”, consider a (one-real-parameter) family of operators 
, then , and

P, Q ⩾ 0

⇒
R(t) = tP + (1 − t)Q, t ∈ ℝ ·R = dR /dt = P − Q ⩾ 0
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P ⩾ Q ⇔ ∀ s > 0,
1

s + P
⩽

1
s + Q

d
dt

1
s + R(t)

= −
1

s + R(t)
·R

1
s + R(t)

⩽ 0

⇒
1

s + P
=

1
s + R(1)

⩽
1

s + R(0)
=

1
s + Q



• Monotonicity of relative entropy


- If ,


- Proof: “ ” (same method)

P, Q ⩾ 0

⇐
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P ⩾ Q ⇔ ∀ s > 0,
1

s + P
⩽

1
s + Q



• Monotonicity of relative entropy


- For general (unbounded) non-negative operator , it is reasonable to 
define If  by


- Because  and  are bounded and hence could be 
defined in the whole Hilbert space, this is a much stronger and 
more useful statement than just saying that  for 
all  on which both  and  are defined.

P ⩾ Q

1/(s + P) 1/(s + Q)

⟨ψ |P |ψ⟩ ⩾ ⟨ψ |Q |ψ⟩
|ψ⟩ P Q
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⟨ψ |
1

s + P
|ψ⟩ ⩽ ⟨ψ |

1
s + Q

|ψ⟩, ∀ |ψ⟩ ∈ ℋ, s ∈ ℝ+



• Monotonicity of relative entropy


- Because  is a decreasing function of (positive) ,


is an increasing function of .


- This proves that  (or  ) implies 


- So 

1/(s + R) R

R

P ⩾ Q 1/(s + P) ⩽ 1/(s + Q)

ΔΨ|Φ;�̃� ⩾ ΔΨ|Φ;𝒰 ⇒ log ΔΨ|Φ;�̃� ⩾ log ΔΨ|Φ;𝒰
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log R = ∫
+∞

0
ds ( 1

s + 1
−

1
s + R )

log P ⩾ log Q



• Monotonicity of relative entropy


- Another useful inequality
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Rα =
sin πα

π ∫
+∞

0
sα ( 1

s
−

1
s + R ) ds, 0 < α < 1

d
dt

Rα =
sin πα

π ∫
+∞

0
sα 1

s + R
·R

1
s + R

ds

∴ ·R ⩾ 0 ⇒ Rα ↗



• Monotonicity of relative entropy


- Another useful inequality


- For example: 
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Rα = R ⋅ Rβ =
sin π(α − 1)

π ∫
+∞

0
sα−1 ( R

s
− 1 +

s
s + R ) ds, 1 < α < 2

d
dt

Rα =
sin π(α − 1)

π ∫
+∞

0
sα−1 (

·R
s

− s
1

s + R
·R

1
s + R ) ds

∴ ·R ⩾ 0 ⇏ Rα ↗

R = (2 0
0 1), ·R = (1 1

1 1), | χ⟩ = ( 1
−1), ⇒ ⟨χ |

d
dt

Rα | χ⟩ < 0



• Why monotonicity?


• If  is cyclic vector for both  and : |Ψ⟩ 𝔄(𝒰) 𝔄(�̃�)
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Ψ|Φ;𝒰SΨ|Φ;𝒰, SΨ|Φ;𝒰 : a |Ψ⟩ ↦ a† |Φ⟩, ∀ a ∈ 𝔄(𝒰)

ΔΨ|Φ;�̃� = S†
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Ψ|Φ;�̃�

SΨ|Φ;�̃�, SΨ|Φ;�̃� : a |Ψ⟩ ↦ a† |Φ⟩, ∀ a ∈ 𝔄(�̃�)

What is the di
fference? 
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ΔΨ|Φ;𝒰 = S†
Ψ|Φ;𝒰SΨ|Φ;𝒰, SΨ|Φ;𝒰 : a |Ψ⟩ ↦ a† |Φ⟩, ∀ a ∈ 𝔄(𝒰)

ΔΨ|Φ;�̃� = S†
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SΨ|Φ;�̃�, SΨ|Φ;�̃� : a |Ψ⟩ ↦ a† |Φ⟩, ∀ a ∈ 𝔄(�̃�)

Domains! 

And so what??



•  


• The domain of  is larger than the domain of .


• Extension of operator: 


      Let ,  be unbounded operators on a Hilbert space  (either both 
linear or both antilinear). If  and , 
then  is called an extension of  ( and usually written as  ).

�̃� ⊂ 𝒰 ⇒ 𝔄(�̃�) ⊂ 𝔄(𝒰)

SΨ|Φ;𝒰 SΨ|Φ;�̃�

X Y ℋ
Dom(Y ) ⊂ Dom(X) Y |Dom(Y) = X |Dom(Y)

X Y Y ⊂ X
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Y ⊂ X ⇒ X†X ⩽ Y†Y ⇒ log X†X ⩽ log Y†Y



• The definition of :


      Define the (positive definite) Hermitian form , 
, if  (  for antilinear  ) 

holds for , one defines


• If two Hermitian form  and  on  agree where they are both 
defined and  is defined whenever  is defined. Then  is called 
an extension of .


• In our problem,  is an extension of , 
 is an extension of .

X†X

F( | χ⟩, |η⟩) = ⟨Xχ |Xη⟩
∀ | χ⟩, |η⟩ ∈ Dom(X) ⟨ζ |ψ⟩ = ⟨Xξ |Xψ⟩ ⟨ζ |ψ⟩ = ⟨Xψ |Xξ⟩ X

∀ |ψ⟩ ∈ Dom(X)

F G ℋ
F G F

G

SΨ|Φ;𝒰 SΨ|Φ;�̃�
ΔΨ|Φ;𝒰 = S†

Ψ|Φ;𝒰SΨ|Φ;𝒰 ΔΨ|Φ;�̃� = S†
Ψ|Φ;�̃�

SΨ|Φ;�̃�
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X†X |ξ⟩ = |ζ⟩



• To understand  , Witten gives an example of 
n-dim quantum mechanics. We would like to simplify it to a 1-
dim quantum mechanics example. 

Y ⊂ X ⇒ X†X ⩽ Y†Y
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• Consider a free particle in 1-dim space region , the Hilbert 
space is .


• The momentum operator could be defined either only for the 
wave functions with Dirichlet boundary condition , or 
for general wave functions .


• It is obviously that  is an extension of .

[0, 1]
L2

ℂ(0, 1)

P0 = − idx
P1 = − idx

P1 P0
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• The Hermitian forms are 


• Is  the Laplacian operator?P†
i Pi = − d2

x = Δ
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F0(ψ1, ψ2) = ⟨P0ψ1 |P0ψ2⟩ = ∫
1

0

dψ̄1

dx
dψ2

dx
dx

F1(ψ1, ψ2) = ⟨P1ψ1 |P1ψ2⟩ = ∫
1

0

dψ̄1

dx
dψ2

dx
dx



• The Hermitian forms are 


• For , because the wave functions satisfy the Dirichlet boundary 
condition,  is called the Dirichlet Laplacian


• For , because the wave functions do not satisfy the Dirichlet 
boundary condition, to ensure the contribution from first two 
terms vanishes,  can be defined only on the wave 
functions with , which is so called the 
Neumann Laplacian.

F0
ΔD = P†

0 P0

F1

ΔN = P†
1 P1

dψ1(0)/dx = dψ1(1)/dx = 0
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Fi(ψ1, ψ2) = ∫
1

0

dψ̄1

dx
dψ2

dx
dx =

dψ̄1

dx
ψ2

x=1
−

dψ̄1

dx
ψ2

x=0
+ ∫

1

0 (−
d2ψ̄1

dx2 ) ψ2dx

⟨P†
0 P0ψ1 |ψ2⟩ = ⟨ΔDψ1 |ψ2⟩ = ∫

1

0 (−
d2ψ̄1

dx2 ) ψ2dx



• Does ?ΔD ⩾ ΔN
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Johann Peter Gustav 
Lejeune Dirichlet


(1805/02/13-1859/05/05)

Carl Gottfried 
Neumann


(1832/05/07-1925/03/27)



• Does ?ΔD ⩾ ΔN
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• Does ?


• For , define the Hermitian form


• It is obviously that  is increasing with  for generic  and 
nondecreasing for all .


• The operator associated with this Hermitian form is , which will 
be also increasing with .


• We want to use  representing  and .

ΔD ⩾ ΔN

λ ⩾ 0

Gλ(ψ, ψ) λ ψ
ψ

Xλ
λ

Xλ ΔD ΔN
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Gλ(ψ1, ψ2) = ∫
1

0

dψ̄1

dx
dψ2

dx
dx + λ (ψ̄1ψ2 |x=1 + ψ̄1ψ2 |x=0 )



• This requires to assign suitable  to give the “correct” domain for 
, which means for all  in the domain of :

λ
Xλψ = Δψ ψ2 Gλ
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⟨Δψ1 |ψ2⟩ = Gλ(ψ1, ψ2) = ∫
1

0

dψ̄1

dx
dψ2

dx
dx + λ (ψ̄1ψ2 |x=1 + ψ̄1ψ2 |x=0 )

= ∫
1

0 (−
d2ψ̄1

dx2
ψ2) dx +

dψ̄1

dx
ψ2

x=1
−

dψ̄1

dx
ψ2

x=0
+ λ (ψ̄1ψ2 |x=1 + ψ̄1ψ2 |x=0 )



• This requires to assign suitable  to give the “correct” domain for 
, which means for all  in the domain of :

λ
Xλψ = Δψ ψ2 Gλ
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⇒

dψ1

dx
+ λψ1 = 0, x = 1

dψ1

dx
− λψ1 = 0, x = 0

⟨Δψ1 |ψ2⟩ = Gλ(ψ1, ψ2) = ∫
1

0

dψ̄1

dx
dψ2

dx
dx + λ (ψ̄1ψ2 |x=1 + ψ̄1ψ2 |x=0 )

= ∫
1

0 (−
d2ψ̄1

dx2
ψ2) dx +

dψ̄1

dx
ψ2

x=1
−

dψ̄1

dx
ψ2

x=0
+ λ (ψ̄1ψ2 |x=1 + ψ̄1ψ2 |x=0 )



• This requires to assign suitable  to give the “correct” domain for 
, which means for all  in the domain of :

λ
Xλψ = Δψ ψ2 Gλ
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⇒

dψ1

dx
+ λψ1 = 0, x = 1

dψ1

dx
− λψ1 = 0, x = 0

⟨Δψ1 |ψ2⟩ = Gλ(ψ1, ψ2) = ∫
1

0

dψ̄1

dx
dψ2

dx
dx + λ (ψ̄1ψ2 |x=1 + ψ̄1ψ2 |x=0 )

= ∫
1

0 (−
d2ψ̄1

dx2
ψ2) dx +

dψ̄1

dx
ψ2

x=1
−

dψ̄1

dx
ψ2

x=0
+ λ (ψ̄1ψ2 |x=1 + ψ̄1ψ2 |x=0 )

⇒ { λ = 0 → ΔN

λ = + ∞ → ΔD



• This requires to assign suitable  to give the “correct” domain for 
, which means for all  in the domain of :

λ
Xλψ = Δψ ψ2 Gλ
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⇒

dψ1

dx
+ λψ1 = 0, x = 1

dψ1

dx
− λψ1 = 0, x = 0

⟨Δψ1 |ψ2⟩ = Gλ(ψ1, ψ2) = ∫
1

0

dψ̄1

dx
dψ2

dx
dx + λ (ψ̄1ψ2 |x=1 + ψ̄1ψ2 |x=0 )

= ∫
1

0 (−
d2ψ̄1

dx2
ψ2) dx +

dψ̄1

dx
ψ2

x=1
−

dψ̄1

dx
ψ2

x=0
+ λ (ψ̄1ψ2 |x=1 + ψ̄1ψ2 |x=0 )

⇒ { λ = 0 → ΔN

λ = + ∞ → ΔD

• We have  , which is just .X+∞ ⩾ X0 ΔD ⩾ ΔN
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• To fix the boundaries of the string on the wall, you have to pay 
some (probably huge) energy.

•   , what does it mean physically?ΔD ⩾ ΔN
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1
s + X
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1

s + Xλ
, s ⩾ 0
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• A finite dimensional example
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• Closed operator and its Graph


- Closed operator: for an unbounded operator , if for 
any sequence  in its domain, the existence of the limits 

 ensures  and , then the 
operator is called a closed operator.

T : ℋ → ℋ′ 

{xn}
lim
n→∞

xn = x, lim
n→∞

Txn = y x ∈ Dom(T ) Tx = y

T : ℋ → ℋ′ 

x ∈ Dom(T )

Tx

ℋ

ℋ′ 
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• Closed operator and its Graph


- Graph: the set  in  is 
called the graph of the operator .


-    is closed linear operator   is Hilbert subspace of 

Γ = {(x, Tx) | x ∈ Dom(T )} ℋ̂ = ℋ ⊕ ℋ′ 

T

T ⇔ Γ ℋ̂

ℋ̂ = ℋ ⊕ ℋ′ 
ℋ′ 

ℋ

Γ =
{(x

,T
x)}

VI. The proof
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ψ ∈ ℋ, χ ∈ ℋ′ , Π (ψ
φ) = ( x

Tx) and ( ψ − x
φ − Tx) ⊥ ( x

Tx)
⇒ ⟨x |ψ − x⟩ + ⟨Tx |φ − Tx⟩ = 0 ⇒ ⟨x |ψ⟩ + ⟨x |T†φ⟩ = ⟨x |x⟩ + ⟨x |T†Tx⟩

⇒ ⟨x |ψ + T†φ⟩ = ⟨x | (1 + T†T ) |x⟩ ⇒ |x⟩ = (1 + T†T )−1( |ψ⟩ + T† |φ⟩)

⇒ Π = ( (1 + T†T )−1 (1 + T†T )−1T†

T(1 + T†T )−1 T(1 + T†T )−1T†)
• The orthogonal projector  and , , 

,  are all bounded operators so 
they can be defined on the whole .

Π (1 + T†T )−1 (1 + T†T )−1T†

T(1 + T†T )−1 T(1 + T†T )−1T†

ℋ̂

VI. The proof
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- Let  and  are two closed operators and , then  
and it is obviously that  ( ).


- For vectors   and operators   

T0 T1 T0 ⊂ T1 Γ0 ⊆ Γ1
Π1 ⩾ Π0 ∀ Ψ, ⟨Ψ |Π1 |Ψ⟩ ⩾ ⟨Ψ |Π0 |Ψ⟩

Ψ = (ψ
0) T0,1/ s
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- Let  and  are two closed operators and , then  
and it is obviously that  ( ).


- For vectors   and operators   

T0 T1 T0 ⊂ T1 Γ0 ⊆ Γ1
Π1 ⩾ Π0 ∀ Ψ, ⟨Ψ |Π1 |Ψ⟩ ⩾ ⟨Ψ |Π0 |Ψ⟩

Ψ = (ψ
0) T0,1/ s

⟨ψ |
1

s + T†
0T0

|ψ⟩ ⩽ ⟨ψ |
1

s + T†
1T1

|ψ⟩

⇒ T†
1 T1 ⩽ T†

0 T0, log T†
1 T1 ⩽ log T†

0 T0
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