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THE MODULAR OPERATOR AND RELATIVE
ENTROPY IN QUANTUM FIELD THEOTY

Il. The relative modular operator

* The relative Tomita operator:

let |¥) and |®) be both cyclic and separating (hormalized)
vectors for the local observable algebra (%) and its commutant
A(%)', the relative Tomita operator Sy, 4, for the algebra A(%) is

defined by

Syip (a]|'¥)) =a’| D)

for Vae A%).
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 The relative Tomita operator

1.

2.

3.

4.

|¥') is separating = Sy 4|0) = 0, the definition is consistent

|¥') is cyclic = Sy,q is defined on a dense subset of #

The condition | ®) is also cyclic and separating makes sure the S,y is

also well-defined, and SgpSy|p = 1.
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Il. The relative modular operator

* The relative modular operator and modular conjugation

1.

The relative modular operator Ay = S‘I’@S‘P@ IS positive semidefinite,
and is positive definite iff Sy 4 is invertible

Iif | @) = [V¥), Ayp = Ay.

The relative modular conjugation is defined by Syjq = Jyj0Ayg,
If | ®) is not separating, then Sy, has a kernel, which is the same to
the kernel of Ay, . Jy)o is defined to annihilate this kernel.

If |®) is not cyclic, then the image of Sy, 4 is not dense. Then Jy 4 is
an antiunitary map from the orthocomplement of the kernel of Sy 4 t0
its image.

Syip (@|¥)) = a' | D)
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* Behavior under unitary transformation:

Syip (@|¥)) = a' | D)
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* Behavior under unitary transformation:

|®) - a’| D), a'a’=aa’ =1’ (unit in AX)")
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* The relative modular operator transformation:

(a"¥ | Agjq | DY) = (a"¥| S, S0 | D) = (Syob¥ | Syj0a"P)
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lll. Relative entropy in quantum field theory

* Relative entropy in classical information theory: Kullback-Leibler
divergence (1951)
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* Relative entropy in classical information theory: Kullback-Leibler
divergence (1951)

Dy (PllQ) =[ p(x)(log p(x) — log g(x)) dx |
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» “A degree of surprising” (log(1/p)): an example, distributions on
n-state.
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 Relative entropy in quantum mechanics: Hisaharu Umegaki (1838
F&, 1962)

CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA, IV
(ENTROPY AND INFORMATION)

By HisAHARU UMEGAKI

1. Introduction.

The theory of information, created by Shannon [23], is developed by Fein-
stein, Kullback, MacMillan, Wiener and other American statisticians (e. g., cf.
[10]), and also advanced into the ergodic theory by Gelfand, Khinchin, Kolmo-
gorov, Yaglom and other Russian probabilists (e.g., c¢f. [8]). Through recent
years, the theory is regarded as a new chapter in the theory of probability.

Recently, Segal [22] gave a mathematical formulation of the entropy of
state of a von Neumann algebra, which contains both the cases for the theory
of information and the theory of quantum statistics. Segal’s theorem was re-
formulated in operator algebraic form by Nakamura and Umegaki [16] and

independently by Davis !3 .
B
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 Relative entropy in quantum mechanics: Hisaharu Umegaki (1838
F&, 1962)

CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA, IV
(ENTROPY AND INFORMATION)

By HisAHARU UMEGAKI

1.

T I(p|lo) = Tr[p(log p — logo)] 7 Fein-
stein, g., cf.
[10]), Kolmo-
gorov,Mn probabilistm recent

years, the theory is regarded as a new chapter in the theory of probability.
Recently, Segal [22] gave a mathematical formulation of the entropy of
state of a von Neumann algebra, which contains both the cases for the theory
of information and the theory of quantum statistics. Segal’s theorem was re-
formulated in operator algebraic form by Nakamura and Umegaki [16] and

independently by Davis [3].
R
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* Relative entropy in quantum field theory:

The relative entropy §'y(%) between two states |¥) and | D),
for measurements in the region %, is

S'yjp(%) = — (¥ |log Ay . | ')
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e Basic properties of the relative entropy

1. Sye(#%) is areal number or + oo;

2. If |®) is not a separating vector of A(%), 0 is a eigenvalue of Ay .9,

then &'y (%) may be +oo;

Sypio(%) = — (VY |log Ayp.q | 'F)
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e Basic properties of the relative entropy

1.

2.

S'y|o(#%) is a real number or + oo;

If | ®) is not a separating vector of A(%), O is a eigenvalue of Ay .9,

then &'y (%) may be +oo;

S'yip(#%) is always non-negative.

Sypio(%) = — (VY |log Ayp.q | 'F)
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e Basic properties of the relative entropy

3. Sy p(#) is always non-negative.

| Swa?) = = (¥]log Ayigy V)|
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e Basic properties of the relative entropy

3. Sy p(#) is always non-negative.

If |(I)> —_ all \P>, a, = 2[(%),, a/Ta/ —_ 1/, then A\qu),% —_ A\Pl\P —_ A\P, SO We

have f(Ay) |¥) = f(1)|¥). That proves

Sypio(%) = — (VY |log Ayp.q | 'F)
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lll. Relative entropy in quantum field theory

e Basic properties of the relative entropy

3. Sy p(#) is always non-negative.

If |(I)> —_ all \P>, a, = 2[(%),, a/Ta/ —_ 1/, then A\qu),% —_ A\Pl\P —_ A\P, SO We
have f(Ay) |¥) = f(1)|¥). That proves

CS)\I’|a"11(62l) — = <‘P
Syp(U) = — (¥

log(1)
log(1)

Sypio(%) = — (VY |log Ayp.q | 'F)
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lll. Relative entropy in quantum field theory

e Basic properties of the relative entropy
3. Sy p(#) is always non-negative.

To show Sy (%) > 0 for | @) # a’|¥), one uses logd <1 —1 (41> 0)

Lo a-1
2 / log 4
! j

Sypio(%) = — (VY |log Ayp.q | 'F)
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e Basic properties of the relative entropy

3. Sy p(#) is always non-negative.

Syjp(%) = — (Y |log Ayp.g | ) 2 (WA — Ag.9) | )

= (YY) = (Y| Ay | V)

Sypio(%) = — (VY |log Ayp.q | 'F)
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lll. Relative entropy in quantum field theory

e Basic properties of the relative entropy
3. Sy p(#) is always non-negative.
Syip(U) = — (Y |log Ay g | ) 2 (V[ = Ag9) ')
=(Y|¥) - <‘P|A‘P|<I>;%|\P>

= (P|¥) - (¥IS;

ql|q)S‘I‘|CI) | T)

Sypio(%) = — (VY |log Ayp.q | 'F)
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lll. Relative entropy in quantum field theory

e Basic properties of the relative entropy

3. Sy p(#) is always non-negative.

Syjp(%) = — (Y |log Ayp.g | ) 2 (WA — Ag.9) | )

= (YY) = (Y| Ay | V)

= (P|¥) - (¥IS;

ql|q)S‘I‘|CI) | T)

= (¥|'¥) - (@] ®) = 0

Sypio(%) = — (VY |log Ayp.q | 'F)
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lll. Relative entropy in quantum field theory

e Basic properties of the relative entropy
3. Sy p(#) is always non-negative.

Ay | V) =) = VI X, (x| Agjpul|¥)=(x['P)
Ve Tac AU st |y) =a|P)

(8% | i |¥) = (@1 S, Suio | ¥) = (@], | ©)

Sypio(%) = — (VY |log Ayp.q | 'F)
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lll. Relative entropy in quantum field theory

e Basic properties of the relative entropy

3. Sy p(#) is always non-negative.

Ay | V) =) = VI X, (x| Agjpul|¥)=(x['P)

C Ve, Tac AU st |y) =al|P)

(a¥ | Ay | P) = (¥ | S\;lq)

= (D[ Sypal¥) = (@ |a’| D)

P|D

Syjo|'¥) = (a¥|S], , | D)

Sypio(%) = — (VY |log Ayp.q | 'F)
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lll. Relative entropy in quantum field theory

e Basic properties of the relative entropy
3. Sy p(#) is always non-negative.

Ay | V) =) = VI X, (x| Agjpul|¥)=(x['P)
Ve Tac AU st |y) =a|P)

(@ | Ay |¥) = (@P[S) Syio V) = (@S], | D)

| P| D

= (D[ Sypal¥) = (@ |a’| D)

= (P|a"|P)=(D|a’|D), VaecAX

Sypio(%) = — (VY |log Ayp.q | 'F)
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lll. Relative entropy in quantum field theory

e Basic properties of the relative entropy
3. Sy p(#) is always non-negative.

Ay | V) =) = VI X, (x| Agjpul|¥)=(x['P)
Ve Tac AU st |y) =a|P)

(@ | Ay |¥) = (@P[S) Syio V) = (@S], | D)

| P| D

= (D[ Sypal¥) = (@ |a’| D)

= (P|a"|P)=(D|a’|D), VaecAX
(aV |¥) = (aD | D), V ae A(Y)

Sypio(%) = — (VY |log Ayp.q | 'F)
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e Basic properties of the relative entropy

3. Sy p(#) is always non-negative.

(aV |¥) = (a® | D), Vaec AU)

Sypio(%) = — (VY |log Ayp.q | 'F)
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lll. Relative entropy in quantum field theory
e Basic properties of the relative entropy
3. Sy p(#) is always non-negative.

(aV |¥) = (a® | D), Vaec AU)
= VabeA%), (a®|b®) = (b'ad| D) = (b'a¥|¥) = (a¥ |b¥P)

Sypio(%) = — (VY |log Ayp.q | 'F)
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lll. Relative entropy in quantum field theory

e Basic properties of the relative entropy

3. Sy p(#) is always non-negative.
(aV |¥) = (a® | D), Vaec AU)
= VabeA%), (ad|bd®) = (b'ad®|P) = (b'a¥?|¥) = (a¥|b¥)

Because a| W) is dense in the Hilbert space, one can define linear
unitary operatora’: a|¥) — a|®) for V a € A(%).

Sypio(%) = — (VY |log Ayp.q | 'F)
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e Basic properties of the relative entropy

3. Sy p(#) is always non-negative.
(aV |¥) = (a® | D), Vaec AU)
= VabeA%), (ad|bd®) = (b'ad®|P) = (b'a¥?|¥) = (a¥|b¥)

Because a| W) is dense in the Hilbert space, one can define linear
unitary operatora’: a|¥) — a|®) for V a € A(%).

aislinear = a’islinear
a’ is bounded, so can be defined on the whole Hilbert space

Sypio(%) = — (VY |log Ayp.q | 'F)




THE MODULAR OPERATOR AND RELATIVE
ENTROPY IN QUANTUM FIELD THEOTY

lll. Relative entropy in quantum field theory

e Basic properties of the relative entropy

3. Sy p(#) is always non-negative.
(aV |¥) = (a® | D), Vaec AU)
= VabeA%), (ad|bd®) = (b'ad®|P) = (b'a¥?|¥) = (a¥|b¥)

Because a| W) is dense in the Hilbert space, one can define linear
unitary operatora’: a|¥) — a|®) for V a € A(%).
aislinear = a’is linear

a’ is bounded, so can be defined on the whole Hilbert space
V ab,ce A%), (cV|aa’|b¥P) = (c¥|aa’b|¥P) = (a'c¥|bd)

Sypio(%) = — (VY |log Ayp.q | 'F)
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lll. Relative entropy in quantum field theory

e Basic properties of the relative entropy

3. Sy p(#) is always non-negative.
(aV |¥) = (a® | D), Vaec AU)
= VabeA%), (ad|bd®) = (b'ad®|P) = (b'a¥?|¥) = (a¥|b¥)

Because a| W) is dense in the Hilbert space, one can define linear
unitary operatora’: a|¥) — a|®) for V a € A(%).
aislinear = a’is linear

a’ is bounded, so can be defined on the whole Hilbert space

V ab,ce A%), (cV|aa’|b¥P) = (c¥|aa’b|¥P) = (a'c¥|bd)
(c¥|ab®) = (c¥W|a'a|b¥Y) = a' € AU)’

Sypio(%) = — (VY |log Ayp.q | 'F)
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lll. Relative entropy in quantum field theory

e Basic properties of the relative entropy

3. é’Tlcp(% ) is always non-negative. It is zero iff there is an unitary

operator a’ € A(% )’ satisfies |D) = a’'| V)

Sypio(%) = — (VY |log Ayp.q | 'F)
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lll. Relative entropy in quantum field theory

e Basic properties of the relative entropy

3. é’Tlcp(% ) is always non-negative. It is zero iff there is an unitary
operator a’ € A(% )’ satisfies |D) = a’'| V)

* The positivity of relative entropy is a very important.

* Another key property of relative entropy is monotonicity.

Sypio(%) = — (VY |log Ayp.q | 'F)
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* Monotonicity of relative entropy

| )
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IV. Monotonicity of relative entropy

* Monotonicity of relative entropy:

If %4 c %, then

S ) = — (¥ 108 Aoz | W) < Syio() = — (¥ |10g gy | )
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IV. Monotonicity of relative entropy

* Monotonicity of relative entropy

- The monotonicity is a direct consequence of the relation

UCU = Ayog 2 Dyow

- What does it mean? And why is it sufficient?
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IV. Monotonicity of relative entropy

* Monotonicity of relative entropy

- The monotonicity is a direct consequence of the relation

UCU = Ayog 2 Dyow

- Positive operator: a self-adjoint operator P is called positive iff
(w|P|y) = 0forany |y) € Z,

- |f P and Q are both bounded self-adjoint operators, P > QO means
P—-02=0;

- How about generic P and Q?
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IV. Monotonicity of relative entropy

* Monotonicity of relative entropy

- fP.0>0,

1 1
<

s+ P \S+Q

- Proof: “=”, consider a (one-real-parameter) family of operators
Rt)=tP+(1-10,teR,thenR=dR/dt =P -0 > 0, and

P>0 © Vs>0,
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IV. Monotonicity of relative entropy

* Monotonicity of relative entropy

- fP.0>0,

1 1
<

s+ P \S+Q

- Proof: “=”, consider a (one-real-parameter) family of operators
Rt)=tP+(1-10,teR,thenR=dR/dt =P -0 > 0, and

P>0 © Vs>0,

d | 1 : 1
= — R <0
dt s + R(¢) s+ R(#) s+ R®)
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IV. Monotonicity of relative entropy

* Monotonicity of relative entropy

- fP.0>0,

1 1
<

s+ P \S+Q

- Proof: “=”, consider a (one-real-parameter) family of operators
Rt)=tP+(1-10,teR,thenR=dR/dt =P -0 > 0, and

P>0 © Vs>0,

d | 1 : 1
= — R <0
dt s + R(¢) s+ R(#) s+ R®)

I SRS B
s+P s+R1) s+R0O s+0

=
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IV. Monotonicity of relative entropy

* Monotonicity of relative entropy

- IfP,0 >0,

1 1
<

s+ P \S+Q

P>0 © Vs>0,

- Proof: “<” (same method)
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IV. Monotonicity of relative entropy
* Monotonicity of relative entropy

- For general (unbounded) non-negative operator , it is reasonable to
define If P > Q by

1 1
— ) < (w|—— ), V eH, seR"
<l/f|S+P|l/f>\<l/f|S+Q|l/f> |y)

- Because 1/(s + P) and 1/(s + Q) are bounded and hence could be
defined in the whole Hilbert space, this is a much stronger and

more useful statement than just saying that (| P|y) > (w| Q| w) for
all |y) on which both P and Q are defined.
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IV. Monotonicity of relative entropy

* Monotonicity of relative entropy

- Because 1/(s + R) is a decreasing function of (positive) R,

+ 00 1 1
longj ds< — >
0 s+1 s+R

IS an increasing function of R.

- This provesthat P> Q (or 1/(s + P) < 1/(s + Q) ) implies
log P > log O

- SO Ay|g.3 Z Ay > 102 Ayg.5 2 108 Ay
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IV. Monotonicity of relative entropy

* Monotonicity of relative entropy

- Another useful inequality

pa sinza [T . (1 1
= s
0

s S+R

>ds, O<ax<l

T

d sinza [T 1 . 1
—R% = s R ds
dt T Jy s+R s+R

. R>0 = R/
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IV. Monotonicity of relative entropy

* Monotonicity of relative entropy

- Another useful inequality

sinz(a—1) [T (R Ky
R*=R-RF = s ——1+4 = ds, 1<a<?
0

T

d sinz(a—1) [*® (R 1 .1
—R%* = s — =5 R ds
dt T 0 Ky s+ R s+R

. R>0 & R*/

- For example:

k=5 )r=(} D)oo=()) = wigrin<o
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V. Example

 Why monotonicity?

o If | W) is cyclic vector for both (%) and A(%):

A\qu);% — S\;lq);%Sxplq);%, S\qu);% . a \P> > a’*— (I)>, Vac 2[(%)

A\qu),% — S\Il'q);cle\qu);GZl’ S‘P|(I),CZ~Z . a ‘P) > aT (I)>, V a & 2[(%)




THE MODULAR OPERATOR AND RELATIVE
ENTROPY IN QUANTUM FIELD THEOTY

V. Example

 Why monotonicity?

o If | W) is cyclic vector for both (%) and A(%):

A\qu);% — S\;lcb;%S\qu);%, S\qu);% . a \P> > a’*— (I)>, Vac 2[(%)

A\qu),% — S‘I’|(I);°Z~[S\P|(I);GZ~Z, S‘P|(I),CZ~Z . a ‘P) > aT (I)>, V a & 2[(%)

%-QY-QM C-Q?

\/\/L\G{' iS HAQ AUL
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V. Example

 Why monotonicity?

o If | W) is cyclic vector for both (%) and A(%):

A\qu);% — S\;lcb;%S\qu);%, S\qu);% . a \P> > a’*— (I)>, Vac 2[(%)

A\qu),% — S‘I’|(I);°Z~[S\P|(I);GZ~Z, S‘P|(I),CZ~Z . a ‘P) > aT (I)>, V a & 2[(%)

Domains!
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V. Example

 Why monotonicity?

o If | W) is cyclic vector for both (%) and A(%):

_ ¢ :
Ay = S\p@;%&m@;% Syp|p.o, - A

. — QT - _
A S\P@;@S\P@;Gzz» Syip.7 © A

P) > a’
P) > a'

Domains!

®), Vaec AU
®), Vae A

And so what??
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V. Example
c UCU => WU c WU

« The domain of Sy 4. is larger than the domain of Sy ¢,.9;-

e Extension of operator:

Let X, Y be unbounded operators on a Hilbert space # (either both
linear or both antilinear). If Dom(Y) € Dom(X) and Y|D0m(Y) = XlDom(Y),

then X is called an extension of Y ( and usually writtenas Y C X).

YcX = X'XKY'Y = logX'X<logY'Y
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V. Example
e The definition of X'X:

Define the (positive definite) Hermitian form F(|y), |n)) = (Xy | Xn),

V | x), In) € Dom(X), if ({|y) = (XE| Xy) (({]y) = (Xy| XE) for antilinear X))
holds for V |y) € Dom(X), one defines

X'X|&) =1¢)

 |If two Hermitian form F and G on # agree where they are both
defined and F' is defined whenever G is defined. Then F' is called
an extension of G.

« In our problem, Sy,¢.9, Is an extension of Sy, 4.9,

— QT ' ' . = Q7 -
Ay .y = S‘Pl (D;%S\qu);% is an extension of Ay g9 = S\P@;%S\m@;%-
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V. Example

« Tounderstand YC X = XX < Y'Y, Witten gives an example of
n-dim quantum mechanics. We would like to simplify it to a 1-
dim quantum mechanics example.
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V. Example

* Consider a free particle in 1-dim space region [0, 1], the Hilbert
space is L2(0, 1).

 The momentum operator could be defined either only for the
wave functions with Dirichlet boundary condition P, = —id_, or

for general wave functions P, = — id,.

* |t is obviously that P, is an extension of P,.
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V. Example

e The Hermitian forms are

1 -
dyr, dy
Fowi, o) = (Pow | Poy) = y -——dx
Jo dx dx
. .
dy, dyr
Fi(y1,w,) = (P | Piys) = p -— 2 dx
Jo dx dx

+ Is P/P,= —d; = A the Laplacian operator?
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V. Example

e The Hermitian forms are

L dipy dy, _dyy

F i(l//p Wz) = J dx = YhH dl/_jl
o dx dx dx

— _dx %)

Y dAp
— d
x=0+'[0( dxz)% *
» For F,, because the wave functions satisfy the Dirichlet boundary
condition, A, = PJPO Is called the Dirichlet Laplacian

L dAg
<ngol//1 () = (Apy lyr) = J T yHdx

x=1

0

» For F,, because the wave functions do not satisfy the Dirichlet
boundary condition, to ensure the contribution from first two
terms vanishes, A, = PITP1 can be defined only on the wave
functions with dy(0)/dx = dy,(1)/dx = 0, which is so called the
Neumann Laplacian.
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V. Example

 Does A, > A,?

Johann Peter Gustav Carl Gottfried

Lejeune Dirichlet Neumann
(1805/02/13-1859/05/05) (1832/05/07-1925/03/27)
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V. Example

 Does A, > A,?
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V. Example

Does A > Ay7?

For A > 0, define the Hermitian form

1 -
dllfl dllfz

G , = dx + A (W .ty _
,1(1//1 l/fz) ), Tx dx (l//1l/fz|x_1 AU'%) |x_0)

It is obviously that G,(y, y) is increasing with 4 for generic y and
nondecreasing for all .

The operator associated with this Hermitian form is X,, which will
be also increasing with A.

We want to use X, representing A, and Ay,
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V. Example

* This requires to assign suitable 4 to give the “correct” domain for
Xw = Ay, which means for all y, in the domain of G;:

1 -
dy, dy _ _
(Ayq lyr) = G)(yy, y) = [ 7 -—2dx + ) (‘//11/12 | = + V1 |x:0)
o dx dx
0 dx2 '° dx '* = dx :

+ A <l/71‘/fz AT |x=0)

x=0
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V. Example

* This requires to assign suitable 4 to give the “correct” domain for
Xw = Ay, which means for all y, in the domain of G;:

1 -
dyry dy _ _
(Ay lyr) = Gy, yn) = [ y L2 dx+ 4 (1/111//2 |, T, |x=0)
o dx dx
1 2 - _ _
= — dx + — -— + A ( +
"0 ( dx2 '/f2> X e (%) . dx L) » <l//1*/fz|x=1 WlV/le:o)
d
ﬂ + /lwl =0, x=1
dx
=
dy,
- = j«llfl =0,x=0
| dx
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V. Example

* This requires to assign suitable 4 to give the “correct” domain for
Xw = Ay, which means for all y, in the domain of G;:

1 4 -
dyr, dy _ _
(Ay |yr) = Gy, ) = [ y L2 dx + 2 (1/111//2 |, T, |x=0)
o dx dx
1 2 - _ _
= - dx + — -— + A ( +
"0 ( dx2 '/f2> X e (%) . dx L) » <l//1*/fz|x=1 WlV/le:o)
( dwl
e +Ay; =0, x=1 120 = A,
=2 =
dy, A=+00 = Ap
- = j«llfl =0,x=0
| dx
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V. Example

* This requires to assign suitable 4 to give the “correct” domain for
Xw = Ay, which means for all y, in the domain of G;:

1 4 -
dyr, dy _ _
(Ay |yr) = Gy, ) = [ y L2 dx + 2 (1/111//2 |, T, |x=0)
o dx dx
1 2 - _ _
= - dx + — -— + A ( +
"0 ( dx2 '/f2> X e (%) . dx L) » <l//1*/fz|x=1 WlV/le:o)
( dwl
e +Ay; =0, x=1 120 = A,
=2 =
dy, A=+00 = Ap
- = j«llfl =0,x=0
| dx

« We have X, , > X, , whichis just A, > Ay.
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V. Example

« A, > Ay, what does it mean physically?

* To fix the boundaries of the string on the wall, you have to pay
some (probably huge) energy.
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* A finite dimensional example

XI Cn+m=(]:nx(]:m_)(]:n+m=(]:nx{:m

x= (4 B\ X, = AB ) o
BT C BT C + )v In Witten’s paper, there is a typo in this equation (3.59).

1 1

> , 5=0
s+X/s+X/1 ~
1 s+ A B a b sa + Aa + Bb" sb + Ab + Bd
1=(s+X)) =\ pr ; =\ pt t pt
s+ X, B s+C+4A) \b'" d Bla+(+C+A0)b" B'b+(s+C+ A)d
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* A finite dimensional example

- Inthelimit 4 = + ©

1_( sa+ Aa+ Bb' sb + Ab + Bd )_) <Saz+Acz+Bl’9Jr Sb+Ab+Bd>
Bla+(s+C+A)b" Bb+(s+C+)d Ba + AbT B'b + Ad

N bTN—lBTa L1 <(s+A—BBw)a —(s+A)aTB/z+Bd>
y)

0 —B'a'B/A + 2d
1 <1 —(s+A)a'B/)+ Bd> 1
= 1=

=> an~ => d~—
s+A 0 —B'a'B/A+d A
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V. Example

* A finite dimensional example

- Inthelimit 4 = + ©

1_( sa+ Aa+ Bb' sb + Ab + Bd )_) <Saz+Acz+Bl’9Jr Sb+Ab+Bd>
Bla+(s+C+A)b" Bb+(s+C+)d Ba + AbT B'b + Ad

N bTN—lBTa L1 <(s+A—BBw)a —(s+A)aTB/z+Bd>
y)

0 —B'a"B/A+ Ad
1 = f 1
I N 1=<1 (s +A)a B//1+Bd> L gL
s+A 0 —B'a'B/A+1d A

=

L (Us+4A) 6(1/4)
s+ X, o1/ 1/2
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s+X s+ X s+ X s+ X,
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For ‘P:( >,/1—>+oo > (¥

S+XZ
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* A finite dimensional example

1 1
> , s=>20 > VW¥YeC™ (¥ Py > (Y
s+X 7 s+X, T < X )2 |s+Xﬂ

o ) = (wl s+ 47 |y)

')

For ‘P:( >,/1—>+oo > (¥

S + XZ
Define an isometric embedding U : C* — C"™" by U(y) = <10//)

W) = (w| U’ : Uly) > (v |w)

(V|
s+ X s+ X s+ A
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* A finite dimensional example

1 1
> , s=>20 > VW¥YeC™ (¥ Py > (Y
s+X 7 s+X, T < X )2 |s+Xﬂ

o ) = (wl s+ 47 |y)

Define an isometric embedding U : C* — C"™" by U(y) = <10//)

')

For ‘P:( >,/1—>+oo > (¥

S+XZ

|w)

W) = (w| U’ : Uly) > (v

(V|
s+ X s+ X s+ A

= (w|U'(log X)U|w) < (w|log A|y)
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* A finite dimensional example

1 1
> , s=>20 > VW¥YeC™ (¥ Py > (Y
s+X 7 s+X, T < X )2 |s+Xﬂ

o ) = (wl s+ 47 |y)

')

For ‘P:( >,/1—>+oo > (¥

S + XZ
Define an isometric embedding U : C* — C"™" by U(y) = <10//)

|w)

W) = (w| U’ : Uly) > (v

(V|
s+ X s+ X s+ A

= (w|U'(log X)U|w) < (w|log A|y)

= (w|U'(log X)U|y) < (w|log(UTXU) | y)
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* Closed operator and its Graph

- Closed operator: for an unbounded operator T : # — # ', if for
any sequence {x,} in its domain, the existence of the limits
lim x, = x, lim Tx, =y ensures x € Dom(7") and Tx =y, then the

n—od n—oo

operator is called a closed operator.

Tx

-

T: - H'

x € Dom(T)

=
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- Graph:thesetl'= {(x,Tx)| x € Dom(7T)} in H=HPH'is
called the graph of the operator T.

- T is closed operator & 1 is closed subset of H

' 4
H=HDH
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VI. The proof

* Closed operator and its Graph

- Graph:thesetl'= {(x,Tx)| x € Dom(7T)} in H=HPH'is
called the graph of the operator T.

- T is closed linear operator & 1' is Hilbert subspace of H

%l
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VI. The proof

* The orthogonal projector 11 of I

verpern(t)=(5) ma (V1) 1 (7)

=> (x
=> (x

y—x)+(Txlp—Tx) =0 = (x|y)+ (x|T7p) = (x|x) + (x| T'Tx)
y+To)=(x|A+TTx) = |xy=0+TT)'(|y)+T"|¢))
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VI. The proof

* The orthogonal projector 11 of I

verpern(t)=(5) ma (V1) 1 (7)

= (x|ly=x)+(Tx|o—-Tx)=0 = &|yp)+ x|T @) = (x|x)+ (x| T"Tx)
= (xly+Tlp) = x|(1+T'T)|x) = |x)=A+TT)"'(ly)+T'|9))

.- A1+7T'T)y' A+T7T)'TT
TA+T'T)' T +T'T)~'T7
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VI. The proof

* The orthogonal projector 11 of I

verpern(t)=(5) ma (V1) 1 (7)

= (xly—x)+{(Tx|o—Tx) =0 = (x|p)+ x|TTp) = (x|x) + (x| T Tx)
= x|y +T'o)=&IA+TTD|x) = [x)=0+TT)'(ly)+T" )

.- A1+7T'T)y' A+T7T)'TT
TA+T'T)' T +T'T)~'T7

* The orthogonal projector ITand (1 + 7'7)~!, (1 + T'T)~'T",
T(1+ T'T)~', T(1 + T'T)~'T" are all bounded operators so
they can be defined on the whole 7.
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- Let 7, and 7 are two closed operators and 7, C 7|, then I, C I,
and it is obviously that I1, > I1, (V ', (¥ |II, |¥) = (¥ |II,|P)).

_ For vectors ¥ = <l(/)j) and operators Ty,/v/s
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* The proof of the monotonicity of relative entropy

- Let 7, and 7 are two closed operators and 7, C 7|, then I, C I,
and it is obviously that I1, > I1, (V ', (¥ |II, |¥) = (¥ |II,|P)).

_ For vectors ¥ = <l(/)j) and operators Ty,/v/s

(w| lw) < (v W)

s+ T3 T s+ T{T,
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VI. The proof

* The proof of the monotonicity of relative entropy

- Let 7, and 7 are two closed operators and 7, C 7|, then I, C I,
and it is obviously that I1, > I1, (V ', (¥ |II, |¥) = (¥ |II,|P)).

_ For vectors ¥ = <l//> and operators Ty,/v/s

0

) <yl —
w) < (y
s+TT, O s+TiT

(v |w)

= T'T\ < T'Ty, logTT, <logTT,
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 Some examples:

_ Linear unbounded operator 7, lim x, = x but lim Tx, does not exist

H = LG%(O, D, T:fx)~ %, f,(x) = ﬁ sin(n’zx)
X n

1
||fn||=—2—>0 = limfn:O
n

n—oo

Tf, =+/2ncos(n’zx) = ||Tf| =n, .. Tf, € L0, 1), f, € Dom(T)
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VI. The proof

 Some examples:

_ Linear unbounded operator 7, lim x, = x but lim Tx, does not exist

H = LG%(O, D, T:fx)~ %, f,(x) = ﬁ sin(n’zx)
X n

1
||fn||=—2—>0 = limfn:O
n

n—oo

Tf, =+/2ncos(n’zx) = ||Tf| =n, .. Tf, € L0, 1), f, € Dom(T)

But it is obviously that the limit lim 77, does not exist.

n—oo
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_ Linear unbounded operator 7, lim x, = x but lim Tx, does not exist

n—oo n—oo
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- I'y & I';: consider the 1-dim wave function with different boundary
conditions again.

d
% =120, 1), T,: fx) d—f Dom(Ty) = {£|f(0) = f(1) = 0, f € B0, 1), f € ]

X

dg
Ty: g(0) = —=, Dom(T) = {g] g € €'0, 1), g’ € '}
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 Some examples:

- I'y & I';: consider the 1-dim wave function with different boundary
conditions again.

1 1 ; 1 2 1
_ df d _ d _d
[dxfg+[dx—f—g=O$def g——g +f—g =0
0 0 dx? dx |,

o dxdx
d’g _
> g——=0 = gx)=Cie*+ Cye™
dx?
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VI. The proof

 Some examples:

- I'y & I';: consider the 1-dim wave function with different boundary
conditions again.

1 1 7 1 2 1
_ df d _ d _d
[dxfg+[dx—f—g=O$def g——g +f—g =0

o dxdx

I'y is of codimension two in 1.






