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I. The modular operators in the finite-dimensional case

FINITE-DIMENSIONAL QUANTUM 
SYSTEMS AND SOME LESSONS

• The “representation matrices” of modular operators


• The cyclic and separating vector


• Although , the “representation matrices” .̂ρ1 ≠ ̂ρ2 ρ1 = ρ2

Ψ = tr

|c1 | 0 ⋯ 0
0 |c2 | ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ |cn |

|1, 1⟩ |2, 1⟩ ⋯ |n, 1⟩
|1, 2⟩ |2, 2⟩ ⋯ |n, 2⟩

⋮ ⋮ ⋱ ⋮
|1, n⟩ |2, n⟩ ⋯ |n, n⟩

CΨ = ρ1/2
1
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ΔΨ | i, j⟩ = |ci /cj |
2 | i, j⟩

ΔΨΞ =
n

∑
i,j=1

|ci |
2 cij |cj |

−2 | i, j⟩, ⇒ CΞ → ρ1CΞρ−1
2
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• The “representation matrices” of modular operators


• Because the bases are fixed by the “diagonalization” of the , 
but not , one usually does not have simple relations such as 

.

Ψ
Φ

σ1 = σ2

Φ = tr

⟨1, 1 |Φ⟩ ⟨1, 2 |Φ⟩ ⋯ ⟨1, n |Φ⟩
⟨2, 1 |Φ⟩ ⟨2, 2 |Φ⟩ ⋯ ⟨2, n |Φ⟩

⋮ ⋮ ⋱ ⋮
⟨n, 1 |Φ⟩ ⟨n, 2 |Φ⟩ ⋯ ⟨n, n |Φ⟩

|1, 1⟩ |2, 1⟩ ⋯ |n, 1⟩
|1, 2⟩ |2, 2⟩ ⋯ |n, 2⟩

⋮ ⋮ ⋱ ⋮
|1, n⟩ |2, n⟩ ⋯ |n, n⟩
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• If we are only interested in  and not , we can make any 
unitary transformation on .


• For example, the unitary transformation: .


• On the other hand, by polar decomposition theorem, one has 
, where  is a positive Hermitian matrix and  is a unitary 

matrix which acts on .


• It is obviously that . So with a unitary transformation on 
, one has .

̂σ1 ̂σ2
ℋ2

U : { | φ̃α⟩} → { |φi⟩}

Φ = PU P U
ℋ2

P = σ1/2
1

ℋ2 Φ = σ1/2
1



• Stone theorem (1930) and 1-parameter automorphism group: 

II. The modular automorphism group

FINITE-DIMENSIONAL QUANTUM 
SYSTEMS AND SOME LESSONS

Marshall Harvey 
Stone


(1903/04/08-1989/01/09)

A self-adjoint 
operator A 
defined on 

some dense 
subset of the 
Hilbert space

A strong 
continued 1-
parameter 

unitary 
transformation 

group 
U(t)=exp(itA)
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Δis
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Local 
observable 

algebra

|Ψ⟩
Cyclic and 
separating 

vector

SΨ
Tomita 

operator
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Modular 

conjugation
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Ψ
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• The properties of the modular automorphism group


1.   commutes with ;


2. Since , for any ,

Δis
Ψ JΨ

Δis
Ψ = ρis

1 ⊗ ρ−is
2 a ⊗ 1 ∈ 𝔄

II. The modular automorphism group
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𝔄(𝒰)

Local 
observable 

algebra |Ψ⟩
Cyclic and 
separating 

vector

SΨ
Tomita 

operator

ΔΨ
Modular 
operator

JΨ
Modular 

conjugation

U(s) = Δis
Ψ

Modular 
automorphism 

group

Δis
Ψ(a ⊗ 1)Δ−is

Ψ = ρis
1 aρ−is

1 ⊗ 1



• The properties of the modular automorphism group


1.  ;


2.  ;


3.  ;


4.  ;

JΨΔis
ΨJΨ = Δis

Ψ

Δis
Ψ(a ⊗ 1)Δ−is

Ψ = ρis
1 aρ−is

1 ⊗ 1

Δis
Ψ 𝔄 Δ−is

Ψ = 𝔄, Δis
Ψ 𝔄′ Δ−is

Ψ = 𝔄′ 

JΨ𝔄JΨ = 𝔄′ , JΨ𝔄′ JΨ = 𝔄
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Δis
Ψ 𝔄 Δ−is
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JΨ(a ⊗ 1)JΨ | i, j⟩ = JΨ(a ⊗ 1) | j, i⟩ = ∑
k

JΨakj |k, i⟩ = ∑
k

ākjJΨ |k, i⟩

= ∑
k

ākj | i, k⟩ = (1 ⊗ a*) | i, j⟩



• The properties of the modular automorphism group


1.  ;


2.  ;


3.  ;


4.  ;


5.  ;

JΨΔis
ΨJΨ = Δis

Ψ

Δis
Ψ(a ⊗ 1)Δ−is

Ψ = ρis
1 aρ−is

1 ⊗ 1

Δis
Ψ 𝔄 Δ−is

Ψ = 𝔄, Δis
Ψ 𝔄′ Δ−is

Ψ = 𝔄′ 

JΨ𝔄JΨ = 𝔄′ , JΨ𝔄′ JΨ = 𝔄

JΨ(a ⊗ 1)JΨ = 1 ⊗ a*, JΨ(1 ⊗ a)JΨ = a* ⊗ 1
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• The group generated by relative modular operator is called 
“relative modular group”


• The relative modular group also has properties


1. ;


2.  ;


3.  ;

Δis
Ψ|Φ 𝔄 Δ−is

Ψ|Φ = 𝔄, Δis
Ψ|Φ 𝔄′ Δ−is

Ψ|Φ = 𝔄′ 

JΨ|Φ𝔄JΨ|Φ = 𝔄′ , JΨ|Φ𝔄′ JΨ|Φ = 𝔄

JΨ|Φ(a ⊗ 1)JΨ|Φ = 1 ⊗ a*, JΨ|Φ(1 ⊗ a)JΨ|Φ = a* ⊗ 1

II. The modular automorphism group
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Δis
Ψ|Φ(a ⊗ 1)Δ−is

Ψ|Φ = σis
1 aσ−is

1 ⊗ 1



• The group generated by relative modular operator is called 
“relative modular group”


• The relative modular group also has properties


1. ;


2.  ;


3.  .


• And 

Δis
Ψ|Φ 𝔄 Δ−is

Ψ|Φ = 𝔄, Δis
Ψ|Φ 𝔄′ Δ−is

Ψ|Φ = 𝔄′ 

JΨ|Φ𝔄JΨ|Φ = 𝔄′ , JΨ|Φ𝔄′ JΨ|Φ = 𝔄

JΨ|Φ(a ⊗ 1)JΨ|Φ = 1 ⊗ a*, JΨ|Φ(1 ⊗ a)JΨ|Φ = a* ⊗ 1

Δis
Ψ|Φ(a ⊗ 1)Δ−is

Ψ|Φ = Δis
Ψ′ |Φ(a ⊗ 1)Δ−is

Ψ′ |Φ

II. The modular automorphism group
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Δis
Ψ|Φ(a ⊗ 1)Δ−is

Ψ|Φ = σis
1 aσ−is

1 ⊗ 1



• These properties are main theorems of Tomita-Takesaki theory


• The theorems are also true for general infinite-dimensional von 
Neumann algebras with cyclic separating vectors


• They are not easy to prove 

II. The modular automorphism group
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Masamichi Takesaki

⽵崎 正道

(1933/07/18-)

Minoru Tomita

冨⽥ 稔


(1924/02/06-2015/10/09)
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• A relatively simple case: the infinite-dimensional algebra  is a 
limit of matrix algebras


• One may think the degrees of freedom in region  as an infinite 
collection of qubits. (Longo, 1978)


• This is believed that this picture is rigorously valid in quantum 
field theory.


• At each finite step in this chain, one defines an approximation 
 to the modular operator (or similarly to  or )

𝔄

𝒰

Δ(n)
Ψ JΨ ΔΨ|Φ

II. The modular automorphism group

FINITE-DIMENSIONAL QUANTUM 
SYSTEMS AND SOME LESSONS

𝔐1 ⊂ 𝔐2 ⊂ ⋯ ⊂ 𝔐n ⊂ ⋯ ⊂ 𝔄(𝒰)

https://msp.org/pjm/1978/75-1/pjm-v75-n1-p17-s.pdf


• The domain of  to the modular operator (or ):


- For a matrix algebra,  is an entire matrix-
valued function of ;

Δis
Ψ Δis

Ψ|Φ

Δiz
Ψ = exp(iz log ΔΨ)

z
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• The domain of  (or ):


- For a matrix algebra,  is an entire matrix-
valued function of ;


- In quantum field theory,  is unbounded and the analytic 
properties of  for a state  depend very much on :


‣ One can find  such that  in entire in ;


‣ One may also find some extreme  on which  can only be 
defined for real .

Δis
Ψ Δis

Ψ|Φ

Δiz
Ψ = exp(iz log ΔΨ)

z

ΔΨ
Δiz

Ψ |ψ⟩ |ψ⟩ |ψ⟩

|ψ⟩ Δiz
Ψ |ψ⟩ z

|ψ⟩ Δiz
Ψ |ψ⟩

z
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• The domain of  (or )


• How about the domain when  acts on  (  or , 
 )?

Δis
Ψ Δis

Ψ|Φ

Δis
Ψ a |Ψ⟩ a ∈ 𝔄 a′ |Ψ⟩

a′ ∈ 𝔄′ 
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Δ1/2
Ψ a |Ψ⟩

2
= ⟨Δ1/2

Ψ aΨ |Δ1/2
Ψ aΨ⟩ = ⟨aΨ |ΔΨ |aΨ⟩
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Δis
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Δ1/2
Ψ a |Ψ⟩

2
= ⟨Δ1/2

Ψ aΨ |Δ1/2
Ψ aΨ⟩ = ⟨aΨ |ΔΨ |aΨ⟩

= ⟨aΨ |S†
ΨSΨ |aΨ⟩ = ⟨SΨaΨ |SΨaΨ⟩



• The domain of  (or )
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Δ1/2
Ψ a |Ψ⟩

2
= ⟨Δ1/2

Ψ aΨ |Δ1/2
Ψ aΨ⟩ = ⟨aΨ |ΔΨ |aΨ⟩

= ⟨aΨ |S†
ΨSΨ |aΨ⟩ = ⟨SΨaΨ |SΨaΨ⟩

= ⟨a†Ψ |a†Ψ⟩ < ∞



• The domain of  (or )


• How about the domain when  acts on  (  or , 
 )?


• Because  for a positive real number  
implies ,

Δis
Ψ Δis

Ψ|Φ

Δis
Ψ a |Ψ⟩ a ∈ 𝔄 a′ |Ψ⟩

a′ ∈ 𝔄′ 

λr < λ + 1 (0 ⩽ r ⩽ 1) λ
Δr

Ψ < ΔΨ + 1
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Δ1/2
Ψ a |Ψ⟩

2
= ⟨a†Ψ |a†Ψ⟩ < ∞



• The domain of  (or )


• How about the domain when  acts on  (  or , 
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• Because  for a positive real number  
implies ,

Δis
Ψ Δis

Ψ|Φ

Δis
Ψ a |Ψ⟩ a ∈ 𝔄 a′ |Ψ⟩

a′ ∈ 𝔄′ 

λr < λ + 1 (0 ⩽ r ⩽ 1) λ
Δr

Ψ < ΔΨ + 1
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Δ1/2
Ψ a |Ψ⟩

2
= ⟨a†Ψ |a†Ψ⟩ < ∞

⟨Δr/2
Ψ aΨ |Δr/2

Ψ aΨ⟩ < ⟨Δ1/2
Ψ aΨ |Δ1/2

Ψ aΨ⟩ + ⟨aΨ |aΨ⟩ < ∞

0 ⩽ r ⩽ 1



• The domain of  (or )


• How about the domain when  acts on  (  or , 
 )?


• The unitary operator  does not change the norm of a 
state, so for  ,

Δis
Ψ Δis

Ψ|Φ

Δis
Ψ a |Ψ⟩ a ∈ 𝔄 a′ |Ψ⟩

a′ ∈ 𝔄′ 

Δis
Ψ (s ∈ ℝ)

0 ⩽ r ⩽ 1/2, s ∈ ℝ
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Δr+is
Ψ aΨ

2
< ∞



• The domain of  (or )


• How about the domain when  acts on  (  or , 
 )?


• The unitary operator  does not change the norm of a 
state, so for  ,

Δis
Ψ Δis

Ψ|Φ

Δis
Ψ a |Ψ⟩ a ∈ 𝔄 a′ |Ψ⟩

a′ ∈ 𝔄′ 

Δis
Ψ (s ∈ ℝ)

0 ⩽ r ⩽ 1/2, s ∈ ℝ
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Δr+is
Ψ aΨ

2
< ∞

In Witten’s paper, there is a typo below equation (4.41).



• The domain of  (or )


•   is continuous in the strip  and 
holomorphic in the interior of the strip.

Δis
Ψ Δis

Ψ|Φ

Δiz
Ψa |Ψ⟩ 0 ⩾ Imz ⩾ − 1/2
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Imz

Rez

0

−1/2



• The domain of  (or )


•   is continuous in the strip  and 
holomorphic in the interior of the strip.


•   is continuous in the strip  and 
holomorphic in the interior of the strip.

Δis
Ψ Δis

Ψ|Φ

Δiz
Ψa |Ψ⟩ 0 ⩾ Imz ⩾ − 1/2

Δiz
Ψa′ |Ψ⟩ 1/2 ⩾ Imz ⩾ 0
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Imz

Rez

0

−1/2

+1/2
Strip of Δiz

Ψa′ |Ψ⟩

Strip of Δiz
Ψa |Ψ⟩



• The domain of  (or )


•   and  cannot be continued outside the strips.

Δis
Ψ Δis

Ψ|Φ

Δiz
Ψa |Ψ⟩ Δiz

Ψa′ |Ψ⟩
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• The analytic properties of 


• Why should we be interested in these functions?

F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩
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• The analytic properties of 


• Why should we be interested in these functions?


• They are “two-point correlation functions” on the cyclic 
separating state  with  insertion.

F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩

|Ψ⟩ Δiz
Ψ

II. The modular automorphism group
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• The analytic properties of 


• For real , it is certainly well-defined


• For  ,

F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩

z

z = s − ir (s, r ∈ ℝ)
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z

z = s − ir (s, r ∈ ℝ)
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F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩ = ⟨b†Ψ |Δis

ΨΔr
Ψ |aΨ⟩



• The analytic properties of 


• For real , it is certainly well-defined


• For  ,
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z

z = s − ir (s, r ∈ ℝ)
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F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩ = ⟨b†Ψ |Δis

ΨΔr
Ψ |aΨ⟩

= ⟨Δr/2
Ψ b†Ψ |Δis

Ψ |Δr/2
Ψ aΨ⟩
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Rez

0

−1
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F(s)
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Imz

Rez

0

−1

F(s)

F(s − i)
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• On the upper boundary, 

F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩

F(z) 0 ⩾ Imz ⩾ − 1

F(s) = ⟨Ψ |bΔis
Ψa |Ψ⟩
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F(s − i) = ⟨Ψ |bΔis+1
Ψ a |Ψ⟩ = ⟨Δ1/2

Ψ b†Ψ |Δis
Ψ |Δ1/2

Ψ aΨ⟩
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F(s − i) = ⟨Ψ |bΔis+1
Ψ a |Ψ⟩ = ⟨Δ1/2

Ψ b†Ψ |Δis
Ψ |Δ1/2

Ψ aΨ⟩
= ⟨JΨSΨb†Ψ |Δis

Ψ |JΨSΨaΨ⟩ = ⟨JΨbΨ |Δis
Ψ |JΨa†Ψ⟩
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the interior of the strip.
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• On the lower boundary,
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F(s) = ⟨Ψ |bΔis
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F(s − i) = ⟨Ψ |bΔis+1
Ψ a |Ψ⟩ = ⟨Δ1/2

Ψ b†Ψ |Δis
Ψ |Δ1/2

Ψ aΨ⟩
= ⟨JΨSΨb†Ψ |Δis

Ψ |JΨSΨaΨ⟩ = ⟨JΨbΨ |Δis
Ψ |JΨa†Ψ⟩

= ⟨JΨbΨ |JΨΔis
Ψa†Ψ⟩ = ⟨Δis

Ψa†Ψ |bΨ⟩



• The analytic properties of 


•   is continuous in the strip  and holomorphic in 
the interior of the strip.


• On the upper boundary, 


• On the lower boundary,

F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩

F(z) 0 ⩾ Imz ⩾ − 1

F(s) = ⟨Ψ |bΔis
Ψa |Ψ⟩
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F(s − i) = ⟨Ψ |bΔis+1
Ψ a |Ψ⟩ = ⟨Δ1/2

Ψ b†Ψ |Δis
Ψ |Δ1/2

Ψ aΨ⟩
= ⟨JΨSΨb†Ψ |Δis

Ψ |JΨSΨaΨ⟩ = ⟨JΨbΨ |Δis
Ψ |JΨa†Ψ⟩

= ⟨JΨbΨ |JΨΔis
Ψa†Ψ⟩ = ⟨Δis

Ψa†Ψ |bΨ⟩
= ⟨Ψ |aΔ−is

Ψ b |Ψ⟩



• The meaning of the analytic properties of 


• Consider the bipartite system again, the density matrix of the 
subsystem 1 is , the expected value 
of any observable  can be written as .


• By quantum statistic physics, we know that the density matrix  
of a balance system with Hamiltonian  and temperature  
should be


• So one can define a “modular Hamiltonian”  by .

F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩

̂ρ1 = Tr2 ̂ρ12 = Tr2( |Ψ⟩⟨Ψ | )
a ∈ 𝔄1 Tr1( ̂ρ1a)

̂ρ
Ĥ T = 1/β

Ĥ ̂ρ1 = exp(−Ĥ)

II. The modular automorphism group
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̂ρ = Z−1 exp(−βĤ)



• The meaning of the analytic properties of 


• So one can define a “modular Hamiltonian”  by , 
then

F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩

Ĥ ̂ρ1 = exp(−Ĥ)

II. The modular automorphism group
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• The meaning of the analytic properties of 


• So one can define a “modular Hamiltonian”  by , 
then

F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩

Ĥ ̂ρ1 = exp(−Ĥ)

II. The modular automorphism group
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F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩ = ⟨Ψ |bΔiz

ΨaΔ−iz
Ψ |Ψ⟩ = ⟨Ψ |b ̂ρiz

1 a ̂ρ−iz
1 |Ψ⟩



• The meaning of the analytic properties of 


• So one can define a “modular Hamiltonian”  by , 
then

F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩

Ĥ ̂ρ1 = exp(−Ĥ)

II. The modular automorphism group
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F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩ = ⟨Ψ |bΔiz

ΨaΔ−iz
Ψ |Ψ⟩ = ⟨Ψ |b ̂ρiz

1 a ̂ρ−iz
1 |Ψ⟩

= ⟨Ψ |be−izĤaeizĤ |Ψ⟩ = Tr1 [Tr2 ( ̂ρ12be−izĤaeizĤ)]



• The meaning of the analytic properties of 


• So one can define a “modular Hamiltonian”  by , 
then

F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩

Ĥ ̂ρ1 = exp(−Ĥ)

II. The modular automorphism group
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F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩ = ⟨Ψ |bΔiz

ΨaΔ−iz
Ψ |Ψ⟩ = ⟨Ψ |b ̂ρiz

1 a ̂ρ−iz
1 |Ψ⟩

= ⟨Ψ |be−izĤaeizĤ |Ψ⟩ = Tr1 [Tr2 ( ̂ρ12be−izĤaeizĤ)]
= Tr1 ( ̂ρ1be−izĤaeizĤ) = Tr1 (e−Ĥbe−izĤaeizĤ)



• The meaning of the analytic properties of 


• So one can define a “modular Hamiltonian”  by , 
then


• Because  is a Heisenberg operator at time , 
these functions are real time two-point functions in a thermal 
ensemble with Hamiltonian  (with inverse temperature  ) with 
different operator orderings.

F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩

Ĥ ̂ρ1 = exp(−Ĥ)

a(s) = eisĤae−isĤ s

Ĥ 1

II. The modular automorphism group
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F(s) = Tr1 [e−Ĥb (e−isĤaeisĤ)] = Tr1 [e−Ĥba(−s)]
F(s − i) = Tr1 [e−Ĥ (e−isĤaeisĤ) b] = Tr1 [e−Ĥa(−s)b]



• The meaning of the analytic properties of 


• For infinite-dimensional system  which can be factorized as 
, because the modular Hamiltonian  is inevitably 

unbounded, the trace is well-defined iff both  and  have 
non-negative real part, which means .


• This is in consistent with our result (without assuming the 
factorization of the Hilbert space).

F(z) = ⟨Ψ |bΔiz
Ψa |Ψ⟩

ℋ
ℋ = ℋ1 ⊗ ℋ2 Ĥ

iz 1 − iz
0 ⩾ Imz ⩾ − 1

II. The modular automorphism group
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F(z) = Tr1 (e−Ĥbe−izĤaeizĤ) = Tr1 (e−(1−iz)Ĥbe−izĤa)



• Multi-point correlation functions, for example


• The domain of holomorphy should be 

II. The modular automorphism group
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F(z1, z2) = Tr1 (e−Ĥce−iz1Ĥbe−i(z2−z1)Ĥaeiz2Ĥ)



• Multi-point correlation functions, for example


• The domain of holomorphy should be 

II. The modular automorphism group
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F(z1, z2) = Tr1 (e−Ĥce−iz1Ĥbe−i(z2−z1)Ĥaeiz2Ĥ)

Imz1 < 0, Im(z2 − z1) < 0,



• Multi-point correlation functions, for example


• The domain of holomorphy should be 

II. The modular automorphism group
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F(z1, z2) = Tr1 (e−Ĥce−iz1Ĥbe−i(z2−z1)Ĥaeiz2Ĥ)

Imz1 < 0, Im(z2 − z1) < 0,

−1 − Imz2 < 0



• Multi-point correlation functions, for example


• The domain of holomorphy should be 

II. The modular automorphism group

FINITE-DIMENSIONAL QUANTUM 
SYSTEMS AND SOME LESSONS

F(z1, z2) = Tr1 (e−Ĥce−iz1Ĥbe−i(z2−z1)Ĥaeiz2Ĥ)

Imz1 < 0, Im(z2 − z1) < 0,

−1 − Imz2 < 0

Imz2

Imz1
0

−1



• All statements about holomorphy still apply if  is replaced by 
the relative modular operator .

ΔΨ
ΔΨ|Φ

II. The modular automorphism group
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II. The modular automorphism group
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Ryogo Kubo

久保 亮五


(1920/02/15-1995/03/31)

Julian Seymour 
Schwinger


(1918/02/12-1994/07/16)

Paul Cecil Martin

(1931/01/31-2016/06/19)

• The KMS condition and KMS state  (Kubo 1957, Martin and 
Schwinger 1959)

ω



• The KMS condition and KMS state  (Kubo 1957, Martin and 
Schwinger 1959)


• The Tomita-Takesaki theory gives a Gibbs state which satisfies 
the KMS condition.

ω

II. The modular automorphism group
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Tr [e−βĤ (eitĤAe−itĤ) B] = Tr [e−βĤB (ei(t+iβ)ĤAe−i(t+iβ)Ĥ)]



• Araki’s definition of relative entropy: a spacetime region  and 
two states 


• How does it go back to the usual definition of the relative entropy 
of a finite degrees of freedom system?

𝒰
Ψ, Φ

III. Monotonicity of relative entropy in the finite-dimensional case

FINITE-DIMENSIONAL QUANTUM 
SYSTEMS AND SOME LESSONS

𝔄(𝒰)
|Ψ⟩
|Φ⟩

𝒮Ψ|Φ;𝒰 = − ⟨Ψ | log ΔΨ|Φ;𝒰 |Ψ⟩



• In nonrelativistic quantum mechanics, there is not spacetime 
region, but still commuting algebras  and .


• Let  be a cyclic separating vector for both  and , and  be 
a second state vector. (The bipartite system again)

𝔄 𝔄′ 

Ψ 𝔄 𝔄′ Φ

III. Monotonicity of relative entropy in the finite-dimensional case
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• In nonrelativistic quantum mechanics, there is not spacetime 
region, but still commuting algebras  and .


• Let  be a cyclic separating vector for both  and , and  be 
a second state vector. (The bipartite system again)

𝔄 𝔄′ 

Ψ 𝔄 𝔄′ Φ

III. Monotonicity of relative entropy in the finite-dimensional case
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𝒮Ψ|Φ = − ⟨Ψ | log ΔΨ|Φ |Ψ⟩ = − Tr ( |Ψ⟩⟨Ψ | log ΔΨ|Φ)



• In nonrelativistic quantum mechanics, there is not spacetime 
region, but still commuting algebras  and .


• Let  be a cyclic separating vector for both  and , and  be 
a second state vector. (The bipartite system again)

𝔄 𝔄′ 

Ψ 𝔄 𝔄′ Φ

III. Monotonicity of relative entropy in the finite-dimensional case

FINITE-DIMENSIONAL QUANTUM 
SYSTEMS AND SOME LESSONS

𝒮Ψ|Φ = − ⟨Ψ | log ΔΨ|Φ |Ψ⟩ = − Tr ( |Ψ⟩⟨Ψ | log ΔΨ|Φ)
= − Tr12 (ρ12 log ΔΨ|Φ) = − Tr12 [ρ12 log (σ1 ⊗ ρ−1

2 )]



• How to calculate ?


• To calculate the logarithm of a tensor product , we use 
singular value decomposition  and 

, then


• Under this base, the tensor product matrix is diagonalized to be 
.

log (σ1 ⊗ ρ−1
2 )

log (A ⊗ B)
A = U†

Adiag{a1, ⋯, an}VA
B = U†

Bdiag{b1, ⋯, bn}VB

A ⊗ B = diag{a1b1, a2b1, ⋯, anb1, a1b2, ⋯, anb2, ⋯, ⋯, a1bn, ⋯, anbn}

III. Monotonicity of relative entropy in the finite-dimensional case
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log (A ⊗ B) = log (U†
Adiag{a1, ⋯, an}VA ⊗ U†

Bdiag{b1, ⋯, bn}VB)



• So under this (Schmidt) base, the logarithm of the tensor product 
is 

III. Monotonicity of relative entropy in the finite-dimensional case
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• So under this (Schmidt) base, the logarithm of the tensor product 
is 

III. Monotonicity of relative entropy in the finite-dimensional case
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log (A ⊗ B) = diag{log a1 + log b1, log a2 + log b1, ⋯, log an + log b1, log a1 + log b2, ⋯,

log an + log b2, ⋯, ⋯, log a1 + log bn, ⋯, log an + log bn}



• So under this (Schmidt) base, the logarithm of the tensor product 
is 
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log (A ⊗ B) = diag{log a1 + log b1, log a2 + log b1, ⋯, log an + log b1, log a1 + log b2, ⋯,

log an + log b2, ⋯, ⋯, log a1 + log bn, ⋯, log an + log bn}

= diag{log a1, log a2, log a1, log a2, ⋯, log an, ⋯, log an, ⋯, log a1, log a2, ⋯, log an}

+diag{log b1, ⋯, log b1, log b2, ⋯, log b2, ⋯, log bn, ⋯, log bn}



• So under this (Schmidt) base, the logarithm of the tensor product 
is 
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= log A ⊗ 1 + 1 ⊗ log B

log (A ⊗ B) = diag{log a1 + log b1, log a2 + log b1, ⋯, log an + log b1, log a1 + log b2, ⋯,

log an + log b2, ⋯, ⋯, log a1 + log bn, ⋯, log an + log bn}

= diag{log a1, log a2, log a1, log a2, ⋯, log an, ⋯, log an, ⋯, log a1, log a2, ⋯, log an}

+diag{log b1, ⋯, log b1, log b2, ⋯, log b2, ⋯, log bn, ⋯, log bn}



• In nonrelativistic quantum mechanics, there is not spacetime 
region, but still commuting algebras  and .


• Let  be a cyclic separating vector for both  and , and  be 
a second state vector. (The bipartite system again)
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𝒮Ψ|Φ = − Tr12 [ρ12 log (σ1 ⊗ ρ−1
2 )]



• In nonrelativistic quantum mechanics, there is not spacetime 
region, but still commuting algebras  and .


• Let  be a cyclic separating vector for both  and , and  be 
a second state vector. (The bipartite system again)

𝔄 𝔄′ 

Ψ 𝔄 𝔄′ Φ
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𝒮Ψ|Φ = − Tr12 [ρ12 log (σ1 ⊗ ρ−1
2 )]

= − Tr12 [ρ12 log (σ1 ⊗ 1)] + Tr12 [ρ12 log (1 ⊗ ρ2)]



• In nonrelativistic quantum mechanics, there is not spacetime 
region, but still commuting algebras  and .


• Let  be a cyclic separating vector for both  and , and  be 
a second state vector. (The bipartite system again)

𝔄 𝔄′ 

Ψ 𝔄 𝔄′ Φ
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𝒮Ψ|Φ = − Tr12 [ρ12 log (σ1 ⊗ ρ−1
2 )]

= − Tr12 [ρ12 log (σ1 ⊗ 1)] + Tr12 [ρ12 log (1 ⊗ ρ2)]
= − Tr1 (ρ1 log σ1) + Tr2 (ρ2 log ρ2)



• In nonrelativistic quantum mechanics, there is not spacetime 
region, but still commuting algebras  and .


• Let  be a cyclic separating vector for both  and , and  be 
a second state vector. (The bipartite system again)

𝔄 𝔄′ 

Ψ 𝔄 𝔄′ Φ
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𝒮Ψ|Φ = − Tr12 [ρ12 log (σ1 ⊗ ρ−1
2 )]

= − Tr12 [ρ12 log (σ1 ⊗ 1)] + Tr12 [ρ12 log (1 ⊗ ρ2)]
= − Tr1 (ρ1 log σ1) + Tr2 (ρ2 log ρ2)
= − Tr1 (ρ1 log σ1) + Tr1 (ρ1 log ρ1)



• In nonrelativistic quantum mechanics, there is not spacetime 
region, but still commuting algebras  and .


• Let  be a cyclic separating vector for both  and , and  be 
a second state vector. (The bipartite system again)

𝔄 𝔄′ 

Ψ 𝔄 𝔄′ Φ

III. Monotonicity of relative entropy in the finite-dimensional case
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𝒮Ψ|Φ = − Tr12 [ρ12 log (σ1 ⊗ ρ−1
2 )]

= − Tr12 [ρ12 log (σ1 ⊗ 1)] + Tr12 [ρ12 log (1 ⊗ ρ2)]
= − Tr1 (ρ1 log σ1) + Tr2 (ρ2 log ρ2)
= − Tr1 (ρ1 log σ1) + Tr1 (ρ1 log ρ1)
= Trρ1 (log ρ1 − log σ1)



• In nonrelativistic quantum mechanics, the relative entropy 
between two states with density matrices  and  in Hilbert 
space  is

ρ1 σ1
ℋ1

III. Monotonicity of relative entropy in the finite-dimensional case
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𝒮(ρ1∥σ1) = Trρ1 (log ρ1 − log σ1)



• In nonrelativistic quantum mechanics, the relative entropy 
between two states with density matrices  and  in Hilbert 
space  is

ρ1 σ1
ℋ1

III. Monotonicity of relative entropy in the finite-dimensional case
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𝒮(ρ1∥σ1) = Trρ1 (log ρ1 − log σ1)
• For these mixed states, one can always introduce another Hilbert 

space  to purify them in , which means there are 
pure states  and  whose reduced density matrices are just  
and .

ℋ2 ℋ1 ⊗ ℋ2
Ψ Φ ρ1

σ1



• In nonrelativistic quantum mechanics, the relative entropy 
between two states with density matrices  and  in Hilbert 
space  is

ρ1 σ1
ℋ1

III. Monotonicity of relative entropy in the finite-dimensional case
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𝒮(ρ1∥σ1) = Trρ1 (log ρ1 − log σ1)
• For these mixed states, one can always introduce another Hilbert 

space  to purify them in , which means there are 
pure states  and  whose reduced density matrices are just  
and .

ℋ2 ℋ1 ⊗ ℋ2
Ψ Φ ρ1

σ1

𝒮(ρ1∥σ1) = 𝒮Ψ|Φ
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|Ψ⟩Purification
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ρ1

σ1

|Ψ⟩Purification

|Φ⟩
Purification



relative entropy  
in QM

𝒮(ρ1∥σ1)
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ρ1

σ1

|Ψ⟩Purification

|Φ⟩
Purification



relative entropy  
in QM

𝒮(ρ1∥σ1)

relative entropy  
by modular operator

𝒮Ψ|Φ
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ρ1

σ1

|Ψ⟩Purification

|Φ⟩
Purification



relative entropy  
in QM

𝒮(ρ1∥σ1)

relative entropy  
by modular operator

𝒮Ψ|Φ
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• The important generic properties of relative entropy holds 
certainly in the (simple) nonrelativistic quantum mechanics case


- Positivity;


- monotonicity (?)


• How to understand the monotonicity in the nonrelativistic 
quantum mechanics case? (There is no spacetime region. )
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• To get pure state “vector”, we purifies the density matrices in 
 with a doubled Hilbert space 


• There are pure states  associated to the 
density matrices  and , respectively.


• We assume that  is non-degenerate (otherwise one can 
always work in a subspace of ), then the vector  is a 
cyclic separating vector.

ℋAB ℋAB ⊗ ℋ′ AB

ΨAB, ΦAB ∈ ℋAB ⊗ ℋ′ AB
ρAB σAB

ρAB
ℋAB ΨAB
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• With same method, we purifies the density matrices in  with a 
doubled Hilbert space 


• There are pure states  associated to the 
density matrices  and , respectively.


• The question is: for any operator  acts on , how to 
map it to an operator acts on  naturally with a 
suitable isometric embedding? 

ℋA
ℋA ⊗ ℋ′ A

ΨA, ΦA ∈ ℋA ⊗ ℋ′ A
ρA σA

a ℋA ⊗ ℋ′ A
ℋAB ⊗ ℋ′ AB
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• A natural way is keeping the factors in  invariant:
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• Because  is cyclic,  is a linear transformation defined on the 
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• Because  is separating, ;


• Because  is separating,  is an embedding.

ΨA U
ℋA ⊗ ℋ′ A

ΨA U(0) = 0

ΨAB U
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• Because , the key point in the proof is that the 
logarithm function satisfies  for any 
embedding .


• So one may replace  with other functions which are 
increasing function of a positive operator .


• An example is 

U†ΔABU = ΔA
log(U†XU) ⩾ U†(log X)U

U

log X
X

Xα, 0 ⩽ α ⩽ 1
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• Rindler space (Rindler, 1966)
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Wolfgang Rindler

(1924/05/18-2019/02/08)

https://aapt.scitation.org/doi/pdf/10.1119/1.1972547


• A simple decomposition of Minkowski spacetime 


• Rindler space


• The local observable algebra associated with the right (left) 
wedge  ( ) is denoted as  ( ).


• , we will learn later that .


• Let  be the vacuum state of a quantum field theory on , we 
will determine the modular operators  and  for observations 
in region .


• (We do not use Carter-Penrose diagram here, because for Minkowski spacetime, a point in the diagram means  but 
not . )

ℳD

𝒰r 𝒰ℓ 𝔄r 𝔄ℓ

𝔄r ⊆ 𝔄′ ℓ 𝔄r = 𝔄′ ℓ

Ω ℳD
ΔΩ JΩ

𝒰r

𝕊D−2

ℝD−2
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• The modular operators  and  for observations in region . 
(Wichmann and Bisognano, 1976)

ΔΩ JΩ 𝒰r
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Eyvind Hugo 
Wichmann


(1928/05/30-2019/02/16)

Joseph Bisognano

(~1947-)

https://aip.scitation.org/doi/pdf/10.1063/1.522898


• A direct path integral approach for this problem is important in 
both Unruh effect (Unruh, 1976) and Hawking radiation (Hawking, 
1975, 1977)
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William George "Bill" 
Unruh


(1945/08/28-)

Stephen William 
Hawking 


(1942/01/08-2018/03/14)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.14.870
https://link.springer.com/content/pdf/10.1007/BF02345020.pdf
https://link.springer.com/content/pdf/10.1007/BF02345020.pdf
https://link.springer.com/content/pdf/10.1007/BF02345020.pdf
https://link.springer.com/content/pdf/10.1007/BF02345020.pdf
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.15.2752
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holds in a (real) neighborhood of a Jost point , 
then the CPT condition 
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holds everywhere.

⟨Ω |φμ(x1)⋯ψν(xn) |Ω⟩ = iF⟨Ω |ψν(xn)⋯φμ(x1) |Ω⟩
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• In one sentence, CPT is always a symmetry of quantum field 
theory in flat spacetime.
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• The CPT symmetry of quantum field theory (in flat spacetime)


• The key point of the proof of the CPT theorem: in complex 
Lorentz group, the PT transformation is in the same connected 
component with the identity element.


• However, in -dimensional spacetime, one needs to replace the 
CPT transformation with the CRT transformation.


• R transformation: reflection of one space spatial coordinate.
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• “The Euclidean path integrals are an effective way to 
compute the vacuum state (vacuum wave function)  of a 
quantum field theory. ”
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• Path integral (quantum mechanics): how to calculate the 
transition amplitude?


• Wave function , where  is 
the state vector in Schr dinger representation,  is the state 
in Heisenberg representation.


• One wants to calculate the transition amplitude  with 
the knowledge of the initial state  and the final state 

.

Ψ(q, t) = ⟨q |Ψ(t)⟩S = ⟨q, t |Ψ⟩H |Ψ(t)⟩S··o |Ψ⟩H

H⟨Ψ2 |Ψ1⟩H
Ψ1(q, ti)

Ψ2(q, tf )
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• One wants to calculate the transition amplitude  with 
the knowledge of the initial state  and the final state 

.


• Because  is a complete base for every , one has


• The path integral tells us how to calculate the integral kernel 
(propagator)

H⟨Ψ2 |Ψ1⟩H
Ψ1(q, ti)

Ψ2(q, tf )
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H⟨Ψ2 |Ψ1⟩H = ∫ dqf dqi H⟨Ψ2 |qf , tf⟩⟨qf , tf |qi, ti⟩⟨qi, ti |Ψ1⟩H

= ∫ dqf dqiΨ2(qf , tf )*⟨qf , tf |qi, ti⟩Ψ1(qi, ti)

⟨qf , tf |qi, ti⟩ = ∫
q(tf )=qf

q(ti)=qi

[dq(t)] exp [ i
ℏ ∫

tf

ti

dt L( ·q, q)]
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• This result tells us that the path integral on the half-space  
as a functional of the boundary values of the fields  gives a 
way to compute the vacuum wave functional .
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• This result tells us that the path integral on the half-space  
as a functional of the boundary values of the fields  gives a 
way to compute the vacuum wave functional .

t < 0
φ(0)

Ω[φ]

t

x

Ω[φ] ∝ ⟨φ(0) |φi(−∞)⟩

= ∫
φ(0)

[𝒟φ]exp [ i
ℏ ∫

0

−∞
dt∫ d3xℒ(φ, ∂μφ)]
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• From Minkowski metric to Euclidean metric: 


• The vacuum wave functional can be calculated with Euclidean 
path integral.


• If the Hilbert space  of a quantum field theory can be 
factorized as , where  and  are Hilbert 
spaces of degrees of freedom located at left-wedge and right-
wedge, respectively, what we want to calculate is the partial 
trace over  of the density matrix .

t → − iτ

ℋ
ℋ = ℋℓ ⊗ ℋr ℋℓ ℋr

ℋℓ |Ω⟩⟨Ω |
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• The boundary condition  of the quantum fields at  can be 
separated to the boundary conditions on the left half-space  
and the boundary conditions on the left half-space .


• So the gluing gives a spacetime  (wedge- ), a copy of 
Euclidean space except that it has been “cut” along the half-
hyperplane .


• In this path integral, the  and  are the boundary values below 
and above the cut.


• How to calculate the path integral?

φ τ = 0
φℓ

φr

W2π 2π

τ = 0, x > 0

φr φ′ r
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• Considering the wedge  of opening angle .


• Euclidean rotation

Wθ θ
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τ

xθ
φf(x, τ)

φ
i (x, τ)

Rθ (τ
x) = ( cos θ sin θ

−sin θ cos θ) (τ
x)
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• Going back to Minkowski spacetime :


• So the wedge path integral  in Euclidean space is a Lorentz 
boost of the  plane by an imaginary boost parameter .

τ = it

Wθ
t − x −iθ
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Rθ (t
x) → Rθ (τ

x) = ( τ cos θ + x sin θ
−τ sin θ + x cos θ) = (iR(θ)t

R(θ)x)
∴ R(θ)t = − iτ cos θ − ix sin θ = t cos θ − ix sin θ

R(θ)x = − τ sin θ + x cos θ = − it sin θ + x sin θ

⇒ Rθ (t
x) = ( cos θ −i sin θ

−i sin θ cos θ ) (t
x) = (cosh(−iθ) sinh(−iθ)

sinh(−iθ) cosh(−iθ)) (t
x)



• One can formally separate the boost generator to the left half-
space part  and the right half-space part .Kℓ Kr
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Kℓ ≡ ∫
0

−∞
dx∫ dD−2y (−x)T00 = − ∫

0

−∞
dx∫ dD−2y xT00

Kr = ∫
+∞

0
dx∫ dD−2y xT00

K = ∫
∞

−∞
dxdD−2y xT00 = Kr − Kℓ

t

x

KrKℓ



• One can formally separate the boost generator to the left half-
space part  and the right half-space part .


• Although  is a well-defined operator,  and  have 
well-defined matrix elements  and  between 
suitable Hilbert space states  and , if one tries to compute 
the norm of the state  or , one will find a universal UV-
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Kℓ Kr

K = Kr − Kℓ Kℓ Kr
⟨χ |Kℓ |ψ⟩ ⟨χ |Kr |ψ⟩
|χ⟩ |ψ⟩

Kℓ |χ⟩ Kr |χ⟩
x = 0 |χ⟩
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• The unitary operator generated by the self-adjoint operator  
with a real boost parameter  is .


• When , the operator becomes .


• So in real time language, the path integral on the wedge  
constructs the operator .
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K
η exp(−iηK)
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Wθ
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−2πα
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τ

x
a

τ

xa

a |Ω⟩ → Δ1/2
Ω a |Ω⟩



• If , one has 


• So  is a local operator in .


• One can not go to the region , otherwise the operator  
will be removed from the path integral.


• So  is holomorphic in  and continuous on the 
boundary of this strip.

α = 1/2 Δ1/2
Ω a |Ω⟩ = exp(πKℓ)exp(−πKr)a |Ω⟩

ã = Δ1/2
Ω a 𝔄ℓ

α > 1/2 a

Δiz
Ω −1/2 < Imz < 0
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• Now we determine the modular conjugation operator .


• For simplicity, we consider a QFT of single Hermitian scalar field 
.


• It suffices to check  and .

JΩ

φ(t, x, y)

SΩφ(0,x, y) |Ω⟩ SΩ
·φ(0,x, y) |Ω⟩

II. Path integral approach
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SΩ = JΩΔ1/2
Ω
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Ω a |Ω⟩ = JΩã |Ω⟩
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• This result means 


• So the modular conjugation operator is just the  
transformation.

JΩ : t → − t, x → − x, y → y

CRxT

JΩ = CRT



• Why  but not  ?CRT RT
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• Suppose we have two Hermitian scalar fields and there is an 
 ( ) conservation charge , the 

modular conjugation  maps the conservation charge to 
SO(2) U(1) Q = ∫ dxdD−2y(φ1

·φ2 − φ2
·φ1)

JΩ

• Why  but not  ?CRT RT

II. Path integral approach
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JΩQJ−1
Ω = − Q

• The  is a universal symmetry of relativistic quantum field 
theory, while there is no symmetry corresponding to . 

CRT
RT



• We verify the deeper properties of the modular operator  and 
the modular conjugation  explicitly: 

- : Lorentz boost with real boost factor ;


-  and  are automorphisms;


-  and  exchanges the two wedge algebras.

ΔΩ
JΩ

Δis
Ω 2πs

Δis
Ω : 𝔄ℓ → 𝔄ℓ Δis

Ω : 𝔄r → 𝔄r
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• In Takesaki-Tomita theory, the modular conjugation  exchanges  
the algebra  with its commutant , so


• Thus the Haag duality for complementary Rindler spacetime is 
proved.  

JΩ

𝔄′ ℓ = 𝔄r, 𝔄′ r = 𝔄ℓ



• The path integral method is extremely illustrating and gives the 
right result, but it is not rigorous.


• The Hilbert space of quantum field theory can not be factorized 
as !


• In the rigorous proof (Bisognano and Wichmann, 1975, 1976), 
one uses holomorphy.

ℋℓ ⊗ ℋr

III. The approach of Bisognano and Wichmann

A FUNDAMENTAL EXAMPLE

https://doi.org/10.1063/1.522605
https://doi.org/10.1063/1.522898


• In the rigorous proof, one uses holomorphy.
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Arthur Strong 
Wightman


(1922/05/30-2013/01/13)

Raymond Frederick 
"Ray" Streater


(1936/04/21-)



• We list the main result here without proof (for detail, see “PCT, 
Spin and Statistics, and All That” or its Chinese translation)
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• Denote the vacuum expectation values (Wightman functions) by 
. By translation 

symmetry, one has , where
. Then there exist (the domain of holomorphy being 

) holomorphic function , such 
that

𝒲(x1, x2, ⋯, xn) = ⟨Ω |φ1(x1)φ2(x2)⋯φn(xn) |Ω⟩
𝒲(x1, x2, ⋯, xn) = W(ξ1, ξ2, ⋯, ξn−1)

ξj = xj − xj+1
ηj ∈ V+ W(ξ1 − iη1, ⋯, ξn−1 − iηn−1)

https://press.princeton.edu/books/paperback/9780691070629/pct-spin-and-statistics-and-all-that
https://press.princeton.edu/books/paperback/9780691070629/pct-spin-and-statistics-and-all-that
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• Since  certainly acts as  and 
, to determine  and , one has 

to justify the claim that for 


• Here  is obtained from  by .
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• We check it for ., where the 
points  are all in the 
right wedge .


• So we have .

a = φ(t1, x1, y1)φ(t2, x2, y2)⋯φ(tn, xn, yn)
p1 = (t1, x1, y1), p2 = (t2, x2, y2), ⋯, pn = (tn, xn, yn)

𝒰r

xj > | tj |

exp(−2πK)a |Ω⟩ = ã |Ω⟩



• We can take  to be spacelike separated from each other.


• Then the field operators commute, we can order them so that 
 for .


• Even more specially, we can restrict to  for .


• The states  with  of this type are dense in . (The proof is 
similar to that for Reeh-Schlieder theorem. )

pj

xj ⩾ xi j > i

xj − xi > | tj − ti | j > i

a |Ω⟩ a ℋ
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• We first check the Lorentz boost  with real boost 
factor . 


• It is a unitary transformation on any state .


• Because it is a Poincare transformation, its action is given by


• The  is the Lorentz transformation of the spacetime 
coordinate

exp(−2πisK)
s

a |Ω⟩

x(η)

III. The approach of Bisognano and Wichmann

A FUNDAMENTAL EXAMPLE

exp(2πiηK)φ(x)exp(−2πiηK) = φ(x(η))

x(η) = (t(η)
x(η)) = (cosh(2πη) sinh(2πη)

sinh(2πη) cosh(2πη)) (t
x)



• Because the vacuum is invariant under Poincare transformation, 
we have . 


• We want to analytically continue this formula in  to  
because 

K |Ω⟩ = 0

η η = i/2
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exp(2πiηK )a |Ω⟩ = exp(2πiηK )φ(x1)φ(x2)⋯φ(xn) |Ω⟩

x(i/2) = (cosh(iπ) sinh(iπ)
sinh(iπ) cosh(iπ)) (t

x) = − x

= φ(x1(η))φ(x2(η))⋯φ(xn(η)) |Ω⟩

= exp(2πiηK )φ(x1)exp(−2πiηK ) exp(2πiηK )φ(x2)exp(−2πiηK )⋯
⋯exp(2πiηK )φ(xn)exp(−2πiηK )exp(2πiηK ) |Ω⟩



• We want to analytically continue this formula in  to  
because 


• So we need to show that when  the imaginary part 
of  is future timelike.

η η = i/2

0 < Imη < 1/2
xj+1 − xj
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x(i/2) = (cosh(iπ) sinh(iπ)
sinh(iπ) cosh(iπ)) (t

x) = − x



• For ,η = a + ib

III. The approach of Bisognano and Wichmann

A FUNDAMENTAL EXAMPLE

cosh(2π(a + ib)) = cos(2πb)cosh(2πa) + i sin(2πb)sinh(2πa)

x(a + ib) = (cos(2πb)cosh(2πa) + i sin(2πb)sinh(2πa) cos(2πb)sinh(2πa) + i sin(2πb)cosh(2πa)
cos(2πb)sinh(2πa) + i sin(2πb)cosh(2πa) cos(2πb)cosh(2πa) + i sin(2πb)sinh(2πa)) (t

x)

sinh(2π(a + ib)) = cos(2πb)sinh(2πa) + i sin(2πb)cosh(2πa)

= (cos(2πb)[t cosh(2πa) + x sinh(2πa)] + i sin(2πb)[t sinh(2πa) + x cosh(2πa)]
cos(2πb)[t sinh(2πa) + x cosh(2πa)] + i sin(2πb)[t cosh(2πa) + x sinh(2πa)])

= cos(2πb)(t cosh(2πa) + x sinh(2πa)
t sinh(2πa) + x cosh(2πa)) + i sin(2πb)(t sinh(2πa) + x cosh(2πa)

t cosh(2πa) + x sinh(2πa))
∴ Im(xj+1(a + ib) − xj(a + ib)) = sin(2πb)(sinh(2πa) cosh(2πa)

cosh(2πa) sinh(2πa)) ( tj+1 − tj
xj+1 − xj)

∴ |Im(xj+1(a + ib) − xj(a + ib)) | = sin2(2πb)[cosh2(2πa) − sinh2(2πa)][(xj+1 − xj)2 − (tj+1 − tj)2]

= sin2(2πb)[(xj+1 − xj)2 − (tj+1 − tj)2] > 0



• Because the imaginary part of the  coordinates are 0, we have 
proved that for  and ,  is 
timelike.


• Because  and , the time 
component of  is

η = a + ib 0 < Imη < 1/2 Im(xj+1 − xj)

0 < b < 1/2 xj+1 − xj > | tj+1 − tj |
Im(xj+1 − xj)

III. The approach of Bisognano and Wichmann

A FUNDAMENTAL EXAMPLE

sin(2πb)[(xj+1 − xj)cosh(2πa) + (tj+1 − tj)sinh(2πa)] > 0



• Because the imaginary part of the  coordinates are 0, we have 
proved that for  and ,  is 
timelike.


• Because  and , the time 
component of  is

η = a + ib 0 < Imη < 1/2 Im(xj+1 − xj)

0 < b < 1/2 xj+1 − xj > | tj+1 − tj |
Im(xj+1 − xj)

III. The approach of Bisognano and Wichmann

A FUNDAMENTAL EXAMPLE

sin(2πb)[(xj+1 − xj)cosh(2πa) + (tj+1 − tj)sinh(2πa)] > 0

• So  is holomorphic for 
 and continuous up to the boundary at .


• Then we have , which finishes the proof.

φ(x1(η))φ(x2(η))⋯φ(xn(η)) |Ω⟩
0 < Imη < 1/2 Imη = 1/2

exp(−2πK)a |Ω⟩ = ã |Ω⟩
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Unruh
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∵ 0 = Ua ∇a(UbUb) = UaUb ∇aUb + UaUb ∇aUb = 2Ub(Ua ∇aUb)

∴ Ua ∇aUb ⊥ Ua
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IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

∵ 0 = Ua ∇a(UbUb) = UaUb ∇aUb + UaUb ∇aUb = 2Ub(Ua ∇aUb)

∴ Ua ∇aUb ⊥ Ua

Ua = (U0, U1,0,⋯,0), Ua ∇aUb = ( dU0

dτ
,

dU1

dτ
,0,⋯,0)

∴ ( dU0

dτ
,

dU1

dτ
,0,⋯,0) =
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R (U1, U0,0,⋯,0)



• Unruh’s question: what is seen by an observer undergoing 
constant acceleration in Minkowski spacetime?

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

∵ 0 = Ua ∇a(UbUb) = UaUb ∇aUb + UaUb ∇aUb = 2Ub(Ua ∇aUb)

∴ Ua ∇aUb ⊥ Ua

Ua = (U0, U1,0,⋯,0), Ua ∇aUb = ( dU0

dτ
,

dU1

dτ
,0,⋯,0)

∴ ( dU0

dτ
,

dU1

dτ
,0,⋯,0) =

1
R (U1, U0,0,⋯,0)

⇒ {U0(τ) = cosh(τ/R)
U1(τ) = sinh(τ/R)

⇒ {T(τ) = R sinh(τ/R)
X(τ) = R cosh(τ/R)



• Unruh’s question: what is seen by an observer undergoing 
constant acceleration in Minkowski spacetime?

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

Worldline of observers undergoing 

constant acceleration



• The observer can probe the vacuum 
 by measuring a local operator  

and its adjoint  along its worldline.


• For simplicity, we consider the two-
point functions  with different 
orders  and 

.
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𝒪†

𝒪 ⋅ 𝒪†

⟨Ω |𝒪(x(τ1))𝒪†(x(τ2)) |Ω⟩
⟨Ω |𝒪†(x(τ2))𝒪(x(τ1)) |Ω⟩
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𝒪(x(τ1))

𝒪†(x(τ2))



• The observer can probe the vacuum  by measuring a local 
operator  and its adjoint  along its worldline.


• For simplicity, we consider the two-point functions  with 
different orders  and 

.


• Poincare invariance tells us that these functions depend only on 
the norm and the sign of the time component of .


• So they depend only on .

|Ω⟩
𝒪 𝒪†

𝒪 ⋅ 𝒪†

⟨Ω |𝒪(x(τ1))𝒪†(x(τ2)) |Ω⟩
⟨Ω |𝒪†(x(τ2))𝒪(x(τ1)) |Ω⟩

x(τ1) − x(τ2)

τ = τ1 − τ2

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE



• So we only need to consider


• The basic property of real time two-point functions in a thermal 
ensemble is that there is a holomorphic function on a strip in the 
complex plane whose boundary values on the two boundaries of 
the strip are  and .


• In general, the width of the strip is , where  is the inverse 
temperature. 


• Forget it? See page 199

F(τ) G(τ)

β β = 1/T
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IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

F(τ) = ⟨Ω |𝒪(x(τ))𝒪†(x(0)) |Ω⟩



• So we only need to consider


• The basic property of real time two-point functions in a thermal 
ensemble is that there is a holomorphic function on a strip in the 
complex plane whose boundary values on the two boundaries of 
the strip are  and .


• In general, the width of the strip is , where  is the inverse 
temperature. 


• Forget it? See page 199

F(τ) G(τ)

β β = 1/T

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

F(τ) = ⟨Ω |𝒪(x(τ))𝒪†(x(0)) |Ω⟩
G(τ) = ⟨Ω |𝒪†(x(0))𝒪(x(τ)) |Ω⟩



• The basic property of real time two-point functions in a thermal 
ensemble is that there is a holomorphic function on a strip in the 
complex plane whose boundary values on the two boundaries of 
the strip are  and .


• We give two derivations of Unruh’s result:


1. starting in real time and deducing the holomorphic properties of 
the correlation functions;


2. starting in Euclidean signature and analytically continuing back to 
real time.

F(τ) G(τ)
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A FUNDAMENTAL EXAMPLE
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• Real time method:


• We set  with , thenτ/R = s + iθ s, θ ∈ ℝ

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

x(τ) = R (sinh(s + iθ)
cosh(s + iθ)) = R (cos θ sinh s + i sin θ cosh s

cos θ cosh s + i sin θ sinh s)
∴ Im(x(τ)) = R sin θ (cosh s

sinh s)



• Real time method:


• We set  with , thenτ/R = s + iθ s, θ ∈ ℝ

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

x(τ) = R (sinh(s + iθ)
cosh(s + iθ)) = R (cos θ sinh s + i sin θ cosh s

cos θ cosh s + i sin θ sinh s)
∴ Im(x(τ)) = R sin θ (cosh s

sinh s)
•  is future timelike  is 

holomorphic


•  is past timelike  is 
holomorphic

−Im(x(τ)) ⇒ F(τ) = ⟨Ω |𝒪(x(τ))𝒪†(x(0)) |Ω⟩

−Im(x(τ)) ⇒ G(τ) = ⟨Ω |𝒪†(x(0))𝒪(x(τ)) |Ω⟩



• Real time method:


•  is future timelike  is 
holomorphic


•  is past timelike  is 
holomorphic

−Im(x(τ)) ⇒ F(τ) = ⟨Ω |𝒪(x(τ))𝒪†(x(0)) |Ω⟩

−Im(x(τ)) ⇒ G(τ) = ⟨Ω |𝒪†(x(0))𝒪(x(τ)) |Ω⟩

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

Im(x(τ)) = R sin θ (cosh s
sinh s)

θ

s0

π

2π

 is holomorphicF(τ)

 is holomorphicG(τ)



• Real time method:


•  is holomorphic in the strip 
, which is ;


•  is holomorphic in the strip 
 (or ), which is  (or 

).

G(τ) = ⟨Ω |𝒪†(x(0))𝒪(x(τ)) |Ω⟩
0 ⩽ θ ⩽ π 0 ⩽ Imτ ⩽ πR

F(τ) = ⟨Ω |𝒪(x(τ))𝒪†(x(0)) |Ω⟩
π ⩽ θ ⩽ 2π −π ⩽ θ ⩽ 0 πR ⩽ Imτ ⩽ 2πR
−πR ⩽ Imτ ⩽ 0

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE



• Real time method:


•  is holomorphic in the strip 
, which is ;


•  is holomorphic in the strip 
 (or ), which is  (or 

).

G(τ) = ⟨Ω |𝒪†(x(0))𝒪(x(τ)) |Ω⟩
0 ⩽ θ ⩽ π 0 ⩽ Imτ ⩽ πR

F(τ) = ⟨Ω |𝒪(x(τ))𝒪†(x(0)) |Ω⟩
π ⩽ θ ⩽ 2π −π ⩽ θ ⩽ 0 πR ⩽ Imτ ⩽ 2πR
−πR ⩽ Imτ ⩽ 0

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

• At ,  is simply the original 
correlation function on the observer’s worldline.


• At ,  is again real, so the boundary 
value .

Imτ = 0 G(τ) = ⟨Ω |𝒪†(x(0))𝒪(x(τ)) |Ω⟩

Imτ = πR x(τ + iπR) = − x(τ)
G(R(s + iπ)) = ⟨Ω |𝒪†(x(0))𝒪(−x(Rs)) |Ω⟩



• Real time method:


•  is holomorphic in the strip 
, which is ;


•  is holomorphic in the strip 
 (or ), which is  (or 

).

G(τ) = ⟨Ω |𝒪†(x(0))𝒪(x(τ)) |Ω⟩
0 ⩽ θ ⩽ π 0 ⩽ Imτ ⩽ πR

F(τ) = ⟨Ω |𝒪(x(τ))𝒪†(x(0)) |Ω⟩
π ⩽ θ ⩽ 2π −π ⩽ θ ⩽ 0 πR ⩽ Imτ ⩽ 2πR
−πR ⩽ Imτ ⩽ 0

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

• At ,  is simply the original 
correlation function on the observer’s worldline.


• At ,  is again real, so the boundary 
value .

Imτ = 2πR F(τ) = ⟨Ω |𝒪(x(τ))𝒪†(x(0)) |Ω⟩

Imτ = πR x(τ + iπR) = − x(τ)
F(R(s + iπ)) = ⟨Ω |𝒪(−x(Rs))𝒪†(x(0)) |Ω⟩



• Real time method:


• In fact, one can define a function  which is holomorphic on 
the combined strip  by:

H(τ)
0 ⩽ Imτ ⩽ 2πR

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

H(τ) = {G(τ) 0 ⩽ Imτ ⩽ πR
F(τ) πR ⩽ Imτ ⩽ 2πR

θ

s0

π

2π

 is holomorphicF(τ)

 is holomorphicG(τ)



• Real time method:


• In fact, one can define a function  which is holomorphic on 
the combined strip  by:


• This is the analytic behavior of a real time two-point correlation 
function in a thermal ensemble with the a strip of width , so 
the temperature is .

H(τ)
0 ⩽ Imτ ⩽ 2πR

2πR
T = 1/(2πR)

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

H(τ) = {G(τ) 0 ⩽ Imτ ⩽ πR
F(τ) πR ⩽ Imτ ⩽ 2πR



• Unruh’s temperature: 


• If the equivalence principle of General Relativity is correct, any 
local measurement can not distinguish a gravitational field from 
an accelerated frame.
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• Unruh’s temperature: 


• Hawking radiation (non-inertial observers in strong gravitational 
field)  what in an accelerating frame?


• An accelerating observer with some style of horizon should 
measure the “vacuum” as a thermal ensemble.

⇒

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE



• Unruh’s temperature: 


• The simplest example: massless Hermitian scalar field two-point 
correlation function.
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• Unruh’s temperature: 


• The simplest example: massless Hermitian scalar field two-point 
correlation function.

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

F(τ) = ⟨Ω |φ(x(τ))φ†(x(0)) |Ω⟩ = ⟨Ω |φ(x(τ))φ(x(0)) |Ω⟩



• Unruh’s temperature: 


• The simplest example: massless Hermitian scalar field two-point 
correlation function.

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

F(τ) = ⟨Ω |φ(x(τ))φ†(x(0)) |Ω⟩ = ⟨Ω |φ(x(τ))φ(x(0)) |Ω⟩

= ∫
dD−1pdD−1q

(2π)2(D−1) 4EpEq

⟨Ω |apa†
qe−ip⋅x(τ)+iq⋅x(0) |Ω⟩
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• The simplest example: massless Hermitian scalar field two-point 
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A FUNDAMENTAL EXAMPLE

F(τ) = ⟨Ω |φ(x(τ))φ†(x(0)) |Ω⟩ = ⟨Ω |φ(x(τ))φ(x(0)) |Ω⟩

= ∫
dD−1pdD−1q

(2π)2(D−1) 4EpEq

⟨Ω |apa†
qe−ip⋅x(τ)+iq⋅x(0) |Ω⟩

= ∫
dD−1p

(2π)D−12 |p |
e−i|p|(t(τ)−t(0))+ip⋅(x(τ)−x(0)) = ∫

pD−2dpdD−2Ωp

(2π)D−12p
e−ip(Δt−Δx cos φ1)



• Unruh’s temperature: 


• The simplest example: massless Hermitian scalar field two-point 
correlation function.
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A FUNDAMENTAL EXAMPLE

F(τ) = ⟨Ω |φ(x(τ))φ†(x(0)) |Ω⟩ = ⟨Ω |φ(x(τ))φ(x(0)) |Ω⟩

= ∫
dD−1pdD−1q

(2π)2(D−1) 4EpEq

⟨Ω |apa†
qe−ip⋅x(τ)+iq⋅x(0) |Ω⟩

= ∫
dD−1p

(2π)D−12 |p |
e−i|p|(t(τ)−t(0))+ip⋅(x(τ)−x(0)) = ∫

pD−2dpdD−2Ωp

(2π)D−12p
e−ip(Δt−Δx cos φ1)

• The integral of the angular coordinates are

∫ dD−2Ωp = ∫
π

0
sinD−3 φ1dφ1 ∫

π

0
sinD−4 φ2dφ2⋯∫

2π

0
φD−2dφD−2
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IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

F(τ) =
1

2(2π)D−1 ∫
∞

0
pD−3dp∫

π

0
sinD−3 φ1dφ1 ∫

π

0
sinD−4 φ2dφ2⋯∫

2π

0
φD−2dφD−2e−ip(Δt−Δx cos φ1)



• Unruh’s temperature: 


• The simplest example: massless Hermitian scalar field two-point 
correlation function.

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

F(τ) =
1

2(2π)D−1 ∫
∞

0
pD−3dp∫

π

0
sinD−3 φ1dφ1 ∫

π

0
sinD−4 φ2dφ2⋯∫

2π

0
φD−2dφD−2e−ip(Δt−Δx cos φ1)

=
2π

2(2π)D−1

D−4

∏
n=1

πΓ((1 + n)/2)
Γ(1 + n /2) ∫

∞

0
pD−3dp∫

π

0
e−ip(Δt−Δx cos φ1) sinD−3 φ1dφ1



• Unruh’s temperature: 


• The simplest example: massless Hermitian scalar field two-point 
correlation function.

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

F(τ) =
1

2(2π)D−1 ∫
∞

0
pD−3dp∫

π

0
sinD−3 φ1dφ1 ∫

π

0
sinD−4 φ2dφ2⋯∫

2π

0
φD−2dφD−2e−ip(Δt−Δx cos φ1)

=
2π

2(2π)D−1

D−4

∏
n=1

πΓ((1 + n)/2)
Γ(1 + n /2) ∫

∞

0
pD−3dp∫

π

0
e−ip(Δt−Δx cos φ1) sinD−3 φ1dφ1

=
π−2+D/2

2(2π)D−2

D−4

∏
n=1

Γ((1 + n)/2)
Γ(1 + n /2) ∫

π

0
(i(Δt − Δx cos φ1))2−DΓ(D − 2)sinD−3 φ1dφ1
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• The simplest example: massless Hermitian scalar field two-point 
correlation function.
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=
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∏
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Γ(1 + n /2) ∫
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0
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π

0
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=
π−2+D/2

2(2π)D−2

D−4

∏
n=1

Γ((1 + n)/2)
Γ(1 + n /2) ∫

π

0
(i(Δt − Δx cos φ1))2−DΓ(D − 2)sinD−3 φ1dφ1

=
π(D−3)/2

2(2πi)D−2(Δt2 − Δx2)D/2−1

D−3

∏
n=1

Γ((1 + n)/2)
Γ(1 + n /2)

=
π(D−3)/2

2(2πi)D−2Γ((D − 1)/2)(Δt2 − Δx2)D/2−1



• Unruh’s temperature: 


• The simplest example: massless Hermitian scalar field two-point 
correlation function.

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

F(τ) =
1

2(2π)D−1 ∫
∞

0
pD−3dp∫

π

0
sinD−3 φ1dφ1 ∫

π

0
sinD−4 φ2dφ2⋯∫

2π

0
φD−2dφD−2e−ip(Δt−Δx cos φ1)

• The result requires  and Im(Δt ± Δx) < 0 D > 2

=
2π

2(2π)D−1

D−4

∏
n=1

πΓ((1 + n)/2)
Γ(1 + n /2) ∫

∞

0
pD−3dp∫

π

0
e−ip(Δt−Δx cos φ1) sinD−3 φ1dφ1

=
π−2+D/2

2(2π)D−2

D−4

∏
n=1

Γ((1 + n)/2)
Γ(1 + n /2) ∫

π

0
(i(Δt − Δx cos φ1))2−DΓ(D − 2)sinD−3 φ1dφ1

=
π(D−3)/2

2(2πi)D−2(Δt2 − Δx2)D/2−1

D−3

∏
n=1

Γ((1 + n)/2)
Γ(1 + n /2)

=
π(D−3)/2

2(2πi)D−2Γ((D − 1)/2)(Δt2 − Δx2)D/2−1
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• For inertial observers, one has  and .t(τ) = τ xi(τ) = 0

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

F(τ) =
π(D−3)/2

2(2πi)D−2Γ((D − 1)/2)(τ − iϵ)D−2

• For accelerated observers, one has  and 
.

t(τ) = R sinh(τ/R)
x(τ) = R cosh(τ/R)

F(τ) =
π(D−3)/2

2(2πi)D−2Γ((D − 1)/2)RD−2 sinhD−2(τ/(2R) − iϵ)
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• Unruh’s temperature: 


• The  field energy fluctuation of the state  is determined byφ |Ω⟩

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

Π(ω) = ∫
+∞

−∞
e−iωt⟨Ω |φ(t)φ(0) |Ω⟩dt = ∫

+∞

−∞
e−iωτF(τ)dτ
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• Unruh’s temperature: 


• For inertial observers, the fluctuation function is

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

Π(ω) ∼ ∫
+∞

−∞

e−iωτdτ
(τ − iϵ)D−2

Reτ0

Imτ

iϵ
Π(ω > 0) ∼ ∮Γ+

e−iωτdτ
(τ − iϵ)D−2

Γ+

= 0
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IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

Π(ω) = −
1

4π2R2 ∫
+∞

−∞

e−iωτdτ
sinh2(τ/(2R) − iϵ)

Π(ω > 0) = −
1

4π2R2 ∮Γ+

e−iωτdτ
sinh2(τ/(2R) − iϵ)

= −
2πi

4π2R2

∞

∑
n=1

Resz=−i(2nπ+ϵ)R ( e−iωz

sinh2(z /(2R) − iϵ) )
= −

i
2πR2

∞

∑
n=1

(−4i)R2ω (e−2πRω)n
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Π(ω) = −
1

4π2R2 ∫
+∞

−∞

e−iωτdτ
sinh2(τ/(2R) − iϵ)

Π(ω > 0) = −
1

4π2R2 ∮Γ+

e−iωτdτ
sinh2(τ/(2R) − iϵ)

= −
2πi

4π2R2

∞

∑
n=1

Resz=−i(2nπ+ϵ)R ( e−iωz

sinh2(z /(2R) − iϵ) )
= −

i
2πR2

∞

∑
n=1

(−4i)R2ω (e−2πRω)n

=
2ω
π

1
e2πRω − 1
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• Unruh’s temperature: 


• For accelerated observers, the fluctuation function is (for )


• This is the standard black-body spectrum (thermal) with 
temperature .


• Thus an accelerated detector measures the vacuum as a thermal 
state!

D = 4

T = 1/(2πR)

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

Π(ω) =
2ω
π

1
e2πRω − 1

T =
1

2πR
=

ℏa
2πckB

= 4.05 × 10−21K × ( a
m/s2 )

Extremely Low!!!



• Euclidean method: (more transparent)


• The Euclidean version (  ) of the worldline of the uniformly 
accelerated observer is:


• The method is quite straightforward. 


• In this slides, we will ignore this method which is given shortly in 
Witten’s paper.

tE = it

IV. An accelerating observer

A FUNDAMENTAL EXAMPLE

(tE(θ)
x(θ)) = R (sin θ

cos θ)
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