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FINITE-DIMENSIONAL QUANTUM
SYSTEMS AND SOME LESSONS

l. The modular operators in the finite-dimensional case

* The “representation matrices” of modular operators

* The cyclic and separating vector
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* Although p, # p,, the “representation matrices” p, = p,.
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A\}qqp(cx) = alCsz_l = GICXPfl
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l. The modular operators in the finite-dimensional case

* The “representation matrices” of modular operators

* The relative modular operator
A\}qqp(cx) = alCsz_l = GICXPfl

> (W] A, | W) =tr [l Ag4(Cy)]
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l. The modular operators in the finite-dimensional case

* The “representation matrices” of modular operators

 Because the bases are fixed by the “diagonalization” of the W,
but not ®, one usually does not have simple relations such as

01 — 62.

((L1]®) (L2]®) -~ (Lal®)(IL1D |21 -« |n 1))

_\(n,1.|CI)) (n,2.|(I>) (n,r;lcb))kll,.n) |2,.n) |n,.n))_
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l. The modular operators in the finite-dimensional case

* |f we are only interested in 6, and not 6,, we can make any
unitary transformation on #,.

» For example, the unitary transformation: U: {|®,)} — {|@;)}-

* On the other hand, by polar decomposition theorem, one has
® = PU, where P is a positive Hermitian matrix and U is a unitary
matrix which acts on 7.

« It is obviously that P = ¢,

F ,, one has ® = ¢,

. S0 with a unitary transformation on
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Il. The modular automorphism group

e Stone theorem (1930) and 1-parameter automorphism group:

A strong
continued 1-
parameter
unitary

A self-adjoint
operator 4
defined on

some dense
subset of the

Hilbert space

transformation

group
U(t)=exp(itA)

Marshall Harvey

Stone
(1903/04/08-1989/01/09)
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e Stone theorem (1930) and 1-parameter automorphism group

 The modular automorphism group: the self-adjoint modular
operator Ay generates a 1-parameter unitary transformation

group by
Aff,, s € R
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e Stone theorem (1930) and 1-parameter automorphism group

 The modular automorphism group: the self-adjoint modular
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group by
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Il. The modular automorphism group

e Stone theorem (1930) and 1-parameter automorphism group

 The modular automorphism group: the self-adjoint modular
operator Ay generates a 1-parameter unitary transformation

group by

Ay, sER
Local
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algebra
- Sy > Ay
Tomita Modular
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Il. The modular automorphism group

e Stone theorem (1930) and 1-parameter automorphism group

 The modular automorphism group: the self-adjoint modular
operator Ay generates a 1-parameter unitary transformation

group by

LS
AT, s € R
Local
observable
algebra
LS
- Sy > Ay > U(s) = A
b 4
Tomita Modular Modular
operator operator automorphism
group
J b4
Cyclic and
separating Modular
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Il. The modular automorphism group

* The properties of the modular automorphism group

1. A commutes with Jy;
2. Since Al =plf®p; ", foranya®1 e,
As(a ® DAG” =pilap/* ® 1

— AlS
- Sy > Ay > U(s) = A
b
Tomita Modular Modular
Local operator operator automorphism
observable group
algebra |‘P>
. J, b
Cyclic and
separating Modular

vector conjugation
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Il. The modular automorphism group

* The properties of the modular automorphism group
1. JypAldy = AY;
2. Aff,(a (1% I)A\E,is = p{sapl_is X 1;
3. AL AAS =AU, AL A A=A
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Il. The modular automorphism group

* The properties of the modular automorphism group
1. JypAldy = AY;
2. Aff,(a (1% I)A\E,is = p{sapl_is X 1;
3. AL AAS =AU, AL A A=A
4. JoUWJy =W, JoU'Jy =A;
Jy@® Dyli, j) = Jy@® D) |j. i)y = ) Jyaylk, iy = Y ayly|k, i)
k

k

=) ayli. k) =1 ®a"]i, j)
k
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Il. The modular automorphism group

* The properties of the modular automorphism group
1. JypAldy = AY;
2. Aff,(a (1% I)A\E,is = p{sapl_is X 1;
3. AL AAS =AU, AL A A=A
4. JoUWJy =W, JoU'Jy =A;

5. Jy@® Dy =1Qa* Jy(1®a)y=2a*QI1;



FINITE-DIMENSIONAL QUANTUM
SYSTEMS AND SOME LESSONS

Il. The modular automorphism group

* The group generated by relative modular operator is called
“relative modular group”

AY (@ ® DAGY = o'ac " @ 1
* The relative modular group also has properties
1 AG g, A AGly = A, A, AT A = AS
2. J\qu)mj\qu) —_ 2[/, ]\P@Q['J\P@ — 2[,

3. Jyp(a® Dy =1Q a%, Jyo(l®a)lye=2a*Q1;
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Il. The modular automorphism group

* The group generated by relative modular operator is called
“relative modular group”

AY (@ ® DAGY = o'ac " @ 1
* The relative modular group also has properties
1 AG g, A AGly = A, A, AT A = AS
2. JyoWlyo =W, JyoA' Ny 1o = A;
3. Jyp(a® Dy =1Q a%, Jyo(l®a)lye=2a*Q 1.

+ And Aj (2 ® DAY, = A, ® DAY,
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Il. The modular automorphism group

* These properties are main theorems of Tomita-Takesaki theory

* The theorems are also true for general infinite-dimensional von
Neumann algebras with cyclic separating vectors

* They are not easy to prove

Minoru Tomita Masamichi Takesaki
=M 2 7l IFiE

(1924/02/06-2015/10/09) (1933/07/18-)
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* One may think the degrees of freedom in region 7% as an infinite
collection of qubits.
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Il. The modular automorphism group

* A relatively simple case: the infinite-dimensional algebra 2 is a
limit of matrix algebras

* One may think the degrees of freedom in region 7% as an infinite

collection of qubits.
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Il. The modular automorphism group

* A relatively simple case: the infinite-dimensional algebra 2 is a
limit of matrix algebras

* One may think the degrees of freedom in region 7% as an infinite
collection of qubits. (Longo, 1978)

M, cIM,C--CcIN, C - CUU)

e This is believed that this picture is rigorously valid in guantum
field theory.

* At each finite step in this chain, one defines an approximation
Ay to the modular operator (or similarly to Jy or Ayq)


https://msp.org/pjm/1978/75-1/pjm-v75-n1-p17-s.pdf
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. The domain of A% to the modular operator (or Aff,lq)):

- For a matrix algebra, A{IZ, = exp(izlog Ay) is an entire matrix-
valued function of z;
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Il. The modular automorphism group

. The domain of A%, (or Aff,lq)):

- For a matrix algebra, A{IZ, = exp(izlog Ay) is an entire matrix-
valued function of z;

- In quantum field theory, Ay is unbounded and the analytic
properties of Ay |y) for a state |y) depend very much on |y):

» One can find |y) such that A |y) in entire in z;

> One may also find some extreme |y) on which Aff, |y) can only be
defined for real z.
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« How about the domain when Al acts on a|¥) (a € 2 or a’|'?),
a e )?
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» The domain of Ay (or A, ;)

« How about the domain when Al acts on a|¥) (a € 2 or a’|'?),
a e )?

>
‘A}Ifza | ‘P)‘ = (Ag*a¥? | Aja?) = (a¥ | Ay |a?P)
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Il. The modular automorphism group

» The domain of Ay (or A, ;)

« How about the domain when Al acts on a|¥) (a € 2 or a’|'?),
a e )?

>
‘A}Ifza | ‘P)‘ = (Ag*a¥? | Aja?) = (a¥ | Ay |a?P)

= (a¥| S} Sy|a¥) = (Sya¥|SyaV)
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Il. The modular automorphism group

» The domain of Ay (or A, ;)

« How about the domain when Al acts on a|¥) (a € 2 or a’|'?),
a e )?

>
‘A}Ifza | ‘P)‘ = (Ag*a¥? | Aja?) = (a¥ | Ay |a?P)

= (a¥| S} Sy|a¥) = (Sya¥|SyaV)

= (a’?|a"P) < o0
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Il. The modular automorphism group

» The domain of Ay (or A, ;)

« How about the domain when Al acts on a|¥) (a € 2 or a’|'?),
a e )?

>
‘A}Ifzal‘l’)‘ = (a’?|a"P) < o0

e Because A" <A+ 1 (0<r<1)fora positive real number 1
implies Ay, < Ay + 1,
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Il. The modular automorphism group

» The domain of Ay, (or Ay ;)

« How about the domain when Al acts on a|¥) (a € 2 or a’|'?),
a e )?

‘A”zal‘l’)‘ (a™P|a’P) < oo

e Because A" <A+ 1 (0<r<1)fora positive real number 1
implies Ay, < Ay + 1,

(AFFaY | AlFa?) < (Agta? | Ayta?) + (a¥ |a¥P) < oo

0<r<l
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Il. The modular automorphism group

» The domain of Ay (or A, ;)

« How about the domain when Al acts on a|¥) (a € 2 or a’|'?),
a e )?

e The unitary operator Aff, (s € R) does not change the norm of a
state, sofor 0 <r<1/2, s € R,

| 2
A(;’Sa‘lj‘ < 00
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Il. The modular automorphism group

» The domain of Ay (or A, ;)

« How about the domain when Al acts on a|¥) (a € 2 or a’|'?),
a e )?

e The unitary operator Aff, (s € R) does not change the norm of a
State, SO fOr O < I’ < 1/2, S E R, In Witten’s paper, there is a typo below equation (4.41).

| 2
A(;’Sa‘lj‘ < 00
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Il. The modular automorphism group

» The domain of Ay (or A, ;)

« AZa|WV) is continuous in the strip 0 > Imz > — 1/2 and
holomorphic in the interior of the strip.

Imz A

Rez

- _—1/2
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Il. The modular automorphism group

» The domain of Ay (or A, ;)

« AZa|WV) is continuous in the strip 0 > Imz > — 1/2 and
holomorphic in the interior of the strip.

« AZa’|'¥) is continuous in the strip 1/2 > Imz > 0 and
holomorphic in the interior of the strip.

Imz 4,
Strip of Aff,a’| V)

- +1/2
Rez

>

! Strip of Aff,a | )

_1/2




FINITE-DIMENSIONAL QUANTUM
SYSTEMS AND SOME LESSONS

Il. The modular automorphism group

» The domain of Ay (or A, ;)

« AZa|¥)and AZa’| W) cannot be continued outside the strips.
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Il. The modular automorphism group
« The analytic properties of F(z) = (¥ |bAZa| V)
 Why should we be interested in these functions?

* They are “two-point correlation functions™ on the cyclic
separating state |'¥) with Ag insertion.
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e For z=s—1ir (s,r € R),
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Il. The modular automorphism group
« The analytic properties of F(z) = (¥ |bAZa| V)
 Forreal z, it is certainly well-defined

e For z=s—1ir (s,r € R),

F(z) = (¥|bAZa|¥) = (b"V|AFAL |aP)
= (AP | AL | AGPaP)
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Il. The modular automorphism group
« The analytic properties of F(z) = (¥ |bAZa| V)

e F(z)is continuous in the strip 0 > Imz > — 1 and holomorphic in
the interior of the strip.

Imz A

Rez
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Il. The modular automorphism group
« The analytic properties of F(z) = (¥ |bAZa| V)

e F(z)is continuous in the strip 0 > Imz > — 1 and holomorphic in

the interior of the strip.
F{(s)
>

Imz A
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Il. The modular automorphism group
« The analytic properties of F(z) = (¥ |bAZa| V)

e F(z)is continuous in the strip 0 > Imz > — 1 and holomorphic in

the interior of the strip.
F{(s)
/) Rez
>
s O \)
F(s—1)

Imz A
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Il. The modular automorphism group
« The analytic properties of F(z) = (¥ |bAZa| V)

e F(z)is continuous in the strip 0 > Imz > — 1 and holomorphic in
the interior of the strip.

« On the upper boundary, F(s) = (¥ |bAia|¥)
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* On the lower boundary,
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Il. The modular automorphism group
« The analytic properties of F(z) = (¥ |bAZa| V)

e F(z)is continuous in the strip 0 > Imz > — 1 and holomorphic in
the interior of the strip.

« On the upper boundary, F(s) = (¥ |bAia|¥)

* On the lower boundary,
F(s—i) = (¥ |bASHa|¥P) = (Ag°b P | AL | A aP)
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Il. The modular automorphism group
« The analytic properties of F(z) = (¥ |bAZa| V)

e F(z)is continuous in the strip 0 > Imz > — 1 and holomorphic in
the interior of the strip.

« On the upper boundary, F(s) = (¥ |bAia|¥)

* On the lower boundary,
F(s—i) = (¥ |bASHa|¥P) = (Ag°b P | AL | A aP)
= (JpSyb W | AL | JySya¥) = (Jgb¥P | AL | Jya V)
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Il. The modular automorphism group
« The analytic properties of F(z) = (¥ |bAZa| V)

e F(z)is continuous in the strip 0 > Imz > — 1 and holomorphic in
the interior of the strip.

« On the upper boundary, F(s) = (¥ |bAia|¥)

* On the lower boundary,
F(s—i) = (¥ |bASHa|¥P) = (Ag°b P | AL | A aP)
= (JpSyb W | AL | JySya¥) = (Jgb¥P | AL | Jya V)
= (Jyb¥ | JyALa™P) = (ASa™P | bW)
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Il. The modular automorphism group
« The analytic properties of F(z) = (¥ |bAZa| V)

e F(z)is continuous in the strip 0 > Imz > — 1 and holomorphic in
the interior of the strip.

« On the upper boundary, F(s) = (¥ |bAia|¥)

* On the lower boundary,
F(s—i) = (¥ |bASHa|¥P) = (Ag°b P | AL | A aP)
= (JpSyb W | AL | JySya¥) = (Jgb¥P | AL | Jya V)
= (Jyb¥ | JyALa™P) = (ASa™P | bW)
= (¥ |aAy"b|P)
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Il. The modular automorphism group

« The meaning of the analytic properties of F(z) = (V| bAfIZ,a | W)

* Consider the bipartite system again, the density matrix of the
subsystem 1is p; = Tryp,, = Tro(|Y)(Y|), the expected value
of any observable a € 2, can be written as Tr;(pa).

By quantum statistic physics, we know that the density matrix p

of a balance system with Hamiltonian H and temperature T = 1/p
should be

p=Z " exp(—pH)

» So one can define a “modular Hamiltonian” H by p, = exp(—H).
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 So one can define a “modular Hamiltonian” H by p, = exp(—PAI),
then
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Il. The modular automorphism group

« The meaning of the analytic properties of F(z) = (V| bAfIZ,a | W)

 So one can define a “modular Hamiltonian” H by p, = exp(—PAI),
then

F(z) = (¥ |bAZa|¥) = (¥|bAZaA | W) = (¥ |bplap | ¥)
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Il. The modular automorphism group

« The meaning of the analytic properties of F(z) = (V| bAfIZ,a | W)

 So one can define a “modular Hamiltonian” H by p, = exp(—PAI),
then

F(z) = (¥ |bAZa|¥) = (¥|bAZaA ;| W) = (¥ bﬁlfaﬁ;lz | P)

— <\P | be—lZHaelel ‘P) — Tl'1 Tl‘z <p12b€ le zzH>
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Il. The modular automorphism group

« The meaning of the analytic properties of F(z) = (V| bAfIZ,a | W)

 So one can define a “modular Hamiltonian” H by p, = exp(—PAI),
then

F(z) = (P|bAGa| W) = (¥ [bAGaA"|'P) = (¥[bpfap, " |'P)
— <\P | be—lZHaelel \{I> — Tl'1 Tl‘2 <,012b€ zzH zzH>

— Tl‘l <p1b€ zzH zzH) — Tl’1 <e—Hbe—izHaeizH>
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Il. The modular automorphism group

« The meaning of the analytic properties of F(z) = (V| bAfIZ,a | W)

 So one can define a “modular Hamiltonian” H by p, = exp(—PAI),
then

F(s) = Tr, [e Hb( ~isH elSH) = Tr, |e"ba(—s)

F(s—1i)=Tr; [e‘ﬁ <e‘i5ﬁaei5ﬁ> bl =Tr, _e_ﬁa(—s)b_
. Because a(s) = ¢’*Hae~ is a Heisenberg operator at time s,
these functions are real time two-point functions in a thermal
ensemble with Hamiltonian H (with inverse temperature 1) with
different operator orderings.
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Il. The modular automorphism group
« The meaning of the analytic properties of F(z) = (V| bAfIZ,a | W)
F(z) = Trq (e_ﬁbe_iZﬁaeiZﬁ> = Trq (e_(l_izmbe_izga>
* For infinite-dimensional system 7 which can be factorized as
H =X, Q # ,, because the modular Hamiltonian H is inevitably

unbounded, the trace is well-defined iff both iz and 1 — iz have
non-negative real part, which means 0 > Imz > — 1.

* This is in consistent with our result (without assuming the
factorization of the Hilbert space).
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Il. The modular automorphism group

* Multi-point correlation functions, for example
F(Zl, Z2) — Trl (e—ﬁce—lzlﬁbe—l(Z2_Zl)ﬁaelZ2ﬁ)

 The domain of holomorphy should be
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* Multi-point correlation functions, for example
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 The domain of holomorphy should be
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Il. The modular automorphism group

* Multi-point correlation functions, for example
F(Zl, Z2) — Trl (e—ﬁce—lzlﬁbe—l(Z2_Zl)ﬁaelZ2ﬁ)
 The domain of holomorphy should be

-1 —Imgz, <0
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Il. The modular automorphism group

* Multi-point correlation functions, for example

F(Zl, Z2) — Trl <6—Hce—llebe—l(Zz_Zl)HaelZZH)

 The domain of holomorphy should be

Imgz,

A

Imz, <0, Im(z, —zy) <0,

-1 —Imgz, <0
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Il. The modular automorphism group

 All statements about holomorphy still apply if Ay is replaced by
the relative modular operator Ay 4.
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Il. The modular automorphism group

 The KMS condition and KMS state w (Kubo 1957, Martin and
Schwinger 1959)

Ryogo Kubo Paul CeCiI Martin Julian Seymour
248 =F (1931/01/31-2016/06/19) Schwinger

(1920/02/15-1995/03/31) (1918/02/12-1994/07/16)
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Il. The modular automorphism group
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lll. Monotonicity of relative entropy in the finite-dimensional case

» Araki’s definition of relative entropy: a spacetime region % and
two states ¥, ®

Sy = — (VY ]10g Ay | )

 How does it go back to the usual definition of the relative entropy
of a finite degrees of freedom system?
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lll. Monotonicity of relative entropy in the finite-dimensional case

* |n nonrelativistic quantum mechanics, there is not spacetime
region, but still commuting algebras 2 and 2.

 Let ¥ be a cyclic separating vector for both 2 and 2l’, and ® be
a second state vector. (The bipartite system again)
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lll. Monotonicity of relative entropy in the finite-dimensional case

* |n nonrelativistic quantum mechanics, there is not spacetime
region, but still commuting algebras 2 and 2.

 Let ¥ be a cyclic separating vector for both 2 and 2l’, and ® be
a second state vector. (The bipartite system again)

Swpo = = (¥110g Agiq | %) = = Tr (| ¥)(¥ [log Ayyo )
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lll. Monotonicity of relative entropy in the finite-dimensional case
« How to calculate log (o; ® p5')?

* To calculate the logarithm of a tensor product log (A ® B), we use
singular value decomposition A = U;{diag{al, ---,a,}V, and

B = Udiag{b,, ---,b,} V5, then
log (A ® B) = log (U;(diag{al, e a,}V,y ® Uldiag{b,, -, bn}VB>

* Under this base, the tensor product matrix is diagonalized to be
A ® B = diag{a,b,,a,b,, ---,a,by,a;b,, -+, a,by, -+, -, a;b,, -+-,ab,}.
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* So under this (Schmidt) base, the logarithm of the tensor product
IS
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* So under this (Schmidt) base, the logarithm of the tensor product
IS

log (A ® B) = diag{loga, +logb,,loga, + logb,, ---,loga, +logb,loga, +1logb,, ---,
loga, +logb,, -, ---,loga, +logb,, ---,1oga, + 1logb, }
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lll. Monotonicity of relative entropy in the finite-dimensional case

* So under this (Schmidt) base, the logarithm of the tensor product
IS
log (A ® B) = diag{loga, +logb,,loga, + logb,, ---,loga, +logb,loga, +1logb,, ---,

loga, +logb,, -, ---,loga, +logb,, ---,1oga, + 1logb, }

= diag{loga,,loga,,loga,,loga,, ---,loga,, ---,l0ga,, ---,10g a;,log a,, ---,loga,}

+diag{10g b17 '"alog blalOg b29 "'910g b27 “'910g bm "'alog bn}
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lll. Monotonicity of relative entropy in the finite-dimensional case

* So under this (Schmidt) base, the logarithm of the tensor product
IS

log (A ® B) = diag{loga, +logb,,loga, + logb,, ---,loga, +logb,loga, +1logb,, ---,
loga, +logb,, -, ---,loga, +logb,, ---,1oga, + 1logb, }

= diag{loga,,loga,,loga,,loga,, ---,loga,, ---,l0ga,, ---,10g a;,log a,, ---,loga,}

+diag{10g b17 '"alog blalOg b29 "'910g b27 “'910g bm "'alog bn}

=logA®1+1Qlogh



FINITE-DIMENSIONAL QUANTUM
SYSTEMS AND SOME LESSONS

lll. Monotonicity of relative entropy in the finite-dimensional case

* |n nonrelativistic quantum mechanics, there is not spacetime
region, but still commuting algebras 2 and 2.

 Let ¥ be a cyclic separating vector for both 2 and 2l’, and ® be
a second state vector. (The bipartite system again)

Syip = — IT2 [plzlog (01 X pz‘l)]
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* |n nonrelativistic quantum mechanics, there is not spacetime
region, but still commuting algebras 2 and 2.

 Let ¥ be a cyclic separating vector for both 2 and 2l’, and ® be
a second state vector. (The bipartite system again)

CS)‘P|CD - — TrlZ :pIZIOg (01 ®,02_1)]
= — Tl’12 plZIOg (61 X 1)] + Tl'12 [p1210g (1 ®p2)]
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* |n nonrelativistic quantum mechanics, there is not spacetime
region, but still commuting algebras 2 and 2.

 Let ¥ be a cyclic separating vector for both 2 and 2l’, and ® be
a second state vector. (The bipartite system again)

Syip = — IT2 :,0121()% (01 ® :02_1)]
= — Tl’12 plZIOg (61 ® 1)] + Tl'12 [p1210g (1 ®p2)]
= —Tr, (pl log 01) + Tr; (,02 10%P2)
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lll. Monotonicity of relative entropy in the finite-dimensional case

* |n nonrelativistic quantum mechanics, there is not spacetime
region, but still commuting algebras 2 and 2.

 Let ¥ be a cyclic separating vector for both 2 and 2l’, and ® be
a second state vector. (The bipartite system again)

Syip = — IT2 :,0121()% (01 ® :02_1)]

= — Tl’12 plZIOg (61 ® 1)] + Tl'12 [p1210g (1 ®p2)]

= —Tr, (pl log 01) + T (p, 10%P2)
)

(
= —Tr, (pl logo,) + Try (,01 logpl)
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lll. Monotonicity of relative entropy in the finite-dimensional case

* |n nonrelativistic quantum mechanics, there is not spacetime
region, but still commuting algebras 2 and 2.

 Let ¥ be a cyclic separating vector for both 2 and 2l’, and ® be
a second state vector. (The bipartite system again)

Syip = — IT2 ,01210g (01 Py )]
= — Tl’12 plZIOg O ® 1 ] + Tl'12 [p1210g (1 ®p2)]
= —Tr, (pl log 01) + Tr; (,02 10%P2)

= — Tl’l (101 lOgUI) + Trl ( 10gp1)
= Trp, (10gp1 — log (71)
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* |In nonrelativistic quantum mechanics, the relative entropy
between two states with density matrices p, and ¢, in Hilbert

space # | is

S'(pille)) = Trp, (108101 — log 51)
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lll. Monotonicity of relative entropy in the finite-dimensional case

* |In nonrelativistic quantum mechanics, the relative entropy
between two states with density matrices p, and ¢, in Hilbert

space # | is
S'(pille)) = Trp, (108101 — log 51)

* For these mixed states, one can always introduce another Hilbert
space # , to purify them in 7|  #,, which means there are
pure states ¥ and ® whose reduced density matrices are just p,

and o;.
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lll. Monotonicity of relative entropy in the finite-dimensional case

* |In nonrelativistic quantum mechanics, the relative entropy
between two states with density matrices p, and ¢, in Hilbert

space # | is
S'(pille)) = Trp, (108101 — log 51)

* For these mixed states, one can always introduce another Hilbert
space # , to purify them in 7|  #,, which means there are
pure states ¥ and ® whose reduced density matrices are just p,

and o;.

S(p1llo) = Sy
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lll. Monotonicity of relative entropy in the finite-dimensional case

P1

X
i
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lll. Monotonicity of relative entropy in the finite-dimensional case

pl% : 2 Purification f )
01? X/r




FINITE-DIMENSIONAL QUANTUM
SYSTEMS AND SOME LESSONS
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pl% : 2 Purification f )
01? \4/? o - | D)
Purification
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Purification

j
Purification

s
o%

relative entropy
in QM

S(p1lloy)
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&
0 . -

Purification

relative entropy relative entropy
in QM by modular operator

S(p1lloy) oS)\qu)

')

Purification
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lll. Monotonicity of relative entropy in the finite-dimensional case
&
0 . -

Purification

relative entropy relative entropy
in QM by modular operator

S(p1lloy)

')

Purification

Sy



FINITE-DIMENSIONAL QUANTUM
SYSTEMS AND SOME LESSONS

lll. Monotonicity of relative entropy in the finite-dimensional case

* The important generic properties of relative entropy holds
certainly in the (simple) nonrelativistic quantum mechanics case

- Positivity;
- monotonicity (?)

 How to understand the monotonicity in the nonrelativistic
quantum mechanics case? (There is no spacetime region. )
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lll. Monotonicity of relative entropy in the finite-dimensional case

* |n nonrelativistic quantum mechanics, one consider the Hilbert
space K ;g =H s Q # g

/_\Eg
S

Z 5

Z p
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lll. Monotonicity of relative entropy in the finite-dimensional case

* |n nonrelativistic quantum mechanics, one consider the Hilbert
space K g =H s Q # g

» Given density matrices p,z and o,z ON #Z 45, then one has
reduced density matrices p, = Trpp,5 and o, = Trgo,z On #Z ;.

 The monotonicity of relative entropy is the relation between the
relative entropies &'(p4zllo45) and S'(p4l|o,4),

S(paplloap) = S(p4lloy)
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lll. Monotonicity of relative entropy in the finite-dimensional case

<& L
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A(U)
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lll. Monotonicity of relative entropy in the finite-dimensional case

p:A, - WUpg a->pl@a=a®l
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lll. Monotonicity of relative entropy in the finite-dimensional case

e Jo get pure state “vector”, we purifies the density matrices in
Z 45 With a doubled Hilbert space 7 ,; ® # '

* There are pure states ¥ 5, ©,5 € # 15 ® # 5 associated to the
density matrices p,z and o, 5, respectively.

« We assume that p,, is non-degenerate (otherwise one can
always work in a subspace of # ), then the vector ¥, is a
cyclic separating vector.
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lll. Monotonicity of relative entropy in the finite-dimensional case

» With same method, we purifies the density matrices in #Z , with a
doubled Hilbert space 7, 7,

* There are pure states ¥,,®, € #, ® # , associated to the
density matrices p, and o,, respectively.

» The question is: for any operator a acts on #,  # ', how to
map it to an operator acts on 7,  # 5 naturally with a
suitable isometric embedding?
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lll. Monotonicity of relative entropy in the finite-dimensional case

» With same method, we purifies the density matrices in #Z , with a
doubled Hilbert space 7, 7,

* There are pure states ¥,,®, € #, ® # , associated to the
density matrices p, and o,, respectively.

» The question is: for any operator a acts on #,  # ', how to
map it to an operator acts on 7,  # 5 naturally with a
suitable isometric embedding?

U: QK = H g Q Kz
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* A natural way is keeping the factors in invariant:
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lll. Monotonicity of relative entropy in the finite-dimensional case

* A natural way is keeping the factors in invariant:

U@?,) =(a® 1¥,,

 Because ¥, is cyclic, U is a linear transformation defined on the
whole #7Z', @ #;

» Because Y, is separating, U(0) = 0;

 Because Y, is separating, U is an embedding.
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 Uis an isometric embedding
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lll. Monotonicity of relative entropy in the finite-dimensional case

 Uis an isometric embedding

(Un|Uy) = <U(a;7lPA) | U(a;(lPA» = <(a;7 ® DYyl (a, ® DY)
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lll. Monotonicity of relative entropy in the finite-dimensional case

 Uis an isometric embedding
(Un|Uy) =(U@,¥y | U@¥y) = (@, ® DY,z (a, ® 1)V 4p)
= (W43l (a;a)( Q1) |¥Y,z =Tr pAB(a;a% ®1)
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lll. Monotonicity of relative entropy in the finite-dimensional case

 Uis an isometric embedding
(Un|Uy) =(U@,¥y | U@¥y) = (@, ® DY,z (a, ® 1)V 4p)
= (W43l (a;a)( Q1) |¥Y,z =Tr pAB(a;a% ®1)

=Tr PAa:f,a;( = (¥, | a;axl ¥y =(a¥,]a¥,)
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lll. Monotonicity of relative entropy in the finite-dimensional case

 Uis an isometric embedding
(Un|Uy) =(U@,¥Y,|U@¥,)) =(a, ® N¥,z|(a, ® N¥,p)
= (Yapl(aja, ® 1)|Pyp) = Tr pyp(ala, @ 1)
=Tr pjala, = (¥,|ala |¥,) = (a, ¥, ]|a,¥,)

= lx)
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« U commutes with the action of 2,

Ualy)) = U(aa, |¥,)) = (aa, @ 1) [V )
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« U commutes with the action of 2,
Ualy)) = U(aa,|¥,)) = (aa, @ 1) | ¥yp)
=@®(a,®1)|¥,5) = p@U(|y))

* S0 ¢ assigns 2, to be a subalgebra of 2,5, and one has a
commutative diagram:
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lll. Monotonicity of relative entropy in the finite-dimensional case

« U commutes with the action of 2,

Ualy)) = Uaa, |¥,)) = (aa, & 1)|¥yp)
=@®(a,®1)|¥,5) = p@U(|y))

* S0 ¢ assigns 2, to be a subalgebra of 2,5, and one has a
commutative diagram:

¥, QK
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lll. Monotonicity of relative entropy in the finite-dimensional case

« U commutes with the action of 2,
Ualy)) = U(aa,|¥,)) = (aa, @ 1) | ¥yp)
=@®(a,®1)|¥,5) = p@U(|y))

* S0 ¢ assigns 2, to be a subalgebra of 2,5, and one has a
commutative diagram:

HQH, ——— R X,

U

%AB ® %AB
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« U commutes with the action of 2,

Ualy)) = Uaa, |¥,)) = (aa, & 1)|¥yp)
=@®(a,®1)|¥,5) = p@U(|y))

* S0 ¢ assigns 2, to be a subalgebra of 2,5, and one has a
commutative diagram:

HQH, ——— R X,

| Y

a
Hs® Ty L8 ., 0 T,
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« Denote the relative modular operators A5 = Ay 1, @Nd
Ay = Ay i, then
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« Denote the relative modular operators A5 = Ay 1, @Nd
Ay = Ay i, then

(a¥, [A,|DY¥,) = (a'¥, | SIZSA [b¥,) = (S,b¥,|Sa¥,) = (b'D,|a'D,)

(a¥, | UTA, U DbY,) = (a® D¥ 45| Ayl (b @ DWP,p)
={((a® 1YV, ;| SZBSAB | (b ®@ 1)WY ,p)
= (Sap(b @ ¥ 15| S4p(a ® Dy p)
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lll. Monotonicity of relative entropy in the finite-dimensional case

« Denote the relative modular operators A5 = Ay 1, @Nd
Ay = Ay i, then

(a¥, [A,|DY¥,) = (a'¥, | SIZSA [b¥,) = (S,b¥,|Sa¥,) = (b'D,|a'D,)

<a‘PA | UTAABUl bTA) — <(a ® 1)\PAB | AAB | (b ® 1)\PAB>
= (@@ )PS5 Sapl (b ® D¥,4p)
= (Sup(b @ DW 5| S,5(a @ DY)
=((b"@ DD, (a" ® DND,p) = (Pypl (bR D(@a" @ 1) | D,p)
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« Denote the relative modular operators A5 = Ay 1, @Nd
Ay = Ay i, then

(a¥, [A,|DY¥,) = (a'¥, | SIZSA [b¥,) = (S,b¥,|Sa¥,) = (b'D,|a'D,)

(aP, | UTA,BUIDY,) = (@@ D51 Ayl (b @ DY, p)
={(@® DW,51S Sipl (b @ DH¥,p)
= (Sap(b & DY 515452 @ DY )
=((b" @ DP,pz|(a" @ DND,4p) = (Pyp| (b @ (@’ ® 1)| Dyp)
= (®ypl(ba" @ 1)|®yp) = Tr 5p(ba’ @ 1)
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lll. Monotonicity of relative entropy in the finite-dimensional case

« Denote the relative modular operators A5 = Ay 1, @Nd
Ay = Ay i, then

(a¥, [A,|DY¥,) = (a'¥, | SIZSA [b¥,) = (S,b¥,|Sa¥,) = (b'D,|a'D,)

<alPA | UTAABUl bTA) = <(a X 1)\PAB | AAB | (b X l)lPAB>
={(@® DW,51S Sipl (b @ DH¥,p)
= (Sap(b @ DY 5| Syp(a @ W yp)
=(b' @D,z (a" @ DD,p) = (P (b D)@' @ 1)| Dy p)
= (®,z|(ba’ @ 1)|D,5) = Tr 5,z(ba’ @ 1)
=Tr o,(ba’) = (a¥,|A,|b¥P,)
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Ay = Ay i, then

« Because we have proved log(U'XU) > U'(log X)U for any
embedding U, we have

U'(log A,p)U < log(UTA,zU) = log A
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« Denote the relative modular operators A5 = Ay 1, @Nd
Ay = Ay i, then

« Because we have proved log(U'XU) > U'(log X)U for any
embedding U, we have

U'(log A,p)U < log(UTA,zU) = log A

L S(pallog) = — (Pyllog Ay |Wy) < — (W4l U'(log Aup)U[¥Wy)
= —(U¥Y,[log A3 |U¥Y,) = — (Wypllog Ayp| P ap)
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lll. Monotonicity of relative entropy in the finite-dimensional case

« Denote the relative modular operators A5 = Ay 1, @Nd
Ay = Ay i, then

« Because we have proved log(U'XU) > U'(log X)U for any
embedding U, we have

U'(log A,p)U < log(UTA,zU) = log A

L S(pallog) = — (Pyllog Ay |Wy) < — (W4l U'(log Aup)U[¥Wy)
= —(UY¥Y,|log A g | UY,) = — (¥, pllog Ay | Pyp)
= S(papllop)




FINITE-DIMENSIONAL QUANTUM
SYSTEMS AND SOME LESSONS
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lll. Monotonicity of relative entropy in the finite-dimensional case

« Because UTA,,U = A,, the key point in the proof is that the
logarithm function satisfies log(UTXU) > U'(log X)U for any
embedding U.

* S0 one may replace log X with other functions which are
iIncreasing function of a positive operator X.

e AnexampleisX*, 0<a<1
(WulAZ[Wa) 2 (Pup| Adp | Pyp)

. Trao$p, ® > Trapciep,z% 0<a<1
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e When a =0, TrA(prj_“ = TI'ABUXBP,L{;;“-

 Expanding around a =0
Tro% %p = Tr(1 + alogo)(1 — alog p)p + O(a?)
=1 —aTrp(ogp — logo) + O(a?)
=1 —-as(pllo) + O(a?)
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lll. Monotonicity of relative entropy in the finite-dimensional case
e Some results in quantum information theory
- von Neumann entropy of a density matrix pis & = — Tr plogp;

- For bipartite system # = #Z , @ # 5, there are reduced density
matrices p, = Trpp,z and pz = Trup,z for density matrix p, 5, one
may denote &5 = S(pPap), S 4 = S(p,y) and &z = S'(pp);

- The mutual information between subsystem A and B is

I(A,B)=C§)A+CSDB—C§)AB
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- Subadditivity of quantum entropy: I(A; B) = 0O for all p,z;

- Proof: define 6,5 = ps ® pp

0 < S(paplloap) = Trappap (10g pap — log UAB)
= Trappaplog pap — Trappsplog (PA ® PB)




FINITE-DIMENSIONAL QUANTUM
SYSTEMS AND SOME LESSONS

lll. Monotonicity of relative entropy in the finite-dimensional case
e Some results in quantum information theory

- Subadditivity of quantum entropy: I(A; B) = 0O for all p,z;

- Proof: define 6,5 = ps ® pp

0 < S(paslloan) = Traspys (10g pap — 10g o4p)
— TrABpAB log PAB — TrABpAB lOg (pA X pB)




FINITE-DIMENSIONAL QUANTUM
SYSTEMS AND SOME LESSONS

lll. Monotonicity of relative entropy in the finite-dimensional case
e Some results in quantum information theory

- Subadditivity of quantum entropy: I(A; B) = 0O for all p,z;

- Proof: define 6,5 = ps ® pp
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lll. Monotonicity of relative entropy in the finite-dimensional case
e Some results in quantum information theory

- Subadditivity of quantum entropy: I(A; B) = 0O for all p,z;

- Proof: define 6,5 = ps ® pp

0 < S(paslloan) = Traspys (10g pap — 10g o4p)
= Trappsplogpap — Trapp,plog (PA ® pB)
= — 85— Trappaz (logpA RI+1I® long)
= — 8,5 — Trup,logp, — Trgpplog py
= —Sp+ Sy + Sy =1A;B)
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e Some results in quantum information theory

- Strong subadditivity of qguantum entropy: consider tripartite
system #Z =X, Q H 5 Q # ', then I(A; BC) = I(A; B) for all p,pe;

- Proof: define 6,50 = ps @ Ppc

0 < S(papclloape) = Trapcpape (10g Papc — 108 GABC)
= Trappspc 102 pasc — TrapcPapc 108 (pA ® PBC)

= — Spc— Irapylogps — Trpcppclog ppe
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e Some results in quantum information theory

- Strong subadditivity of qguantum entropy: consider tripartite
system #Z =X, Q H 5 Q # ', then I(A; BC) = I(A; B) for all p,pe;

- Proof: define 6,50 = ps @ Ppc

0 < S(papclloape) = Trapcpape (10g Papc — 108 GABC)
= Trappspc 102 pasc — TrapcPapc 108 (PA ® PBC)
= — Spc— Irapylogps — Trpcppclog ppe
= =S pct+ Sa+ Spe
= I(A; BC)
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lll. Monotonicity of relative entropy in the finite-dimensional case

e Some results in quantum information theory

- Strong subadditivity of qguantum entropy: consider tripartite
system #Z =X, Q H 5 Q # ', then I(A; BC) = I(A; B) for all p,pe;

- Proof: define 6,50 = ps @ ppe one has S(papcllosse) = I(A; BO).
By monotonicity, one also has S(pgclloape) = S(Paglloas), SO

I(A; BC) = S(papclloapc) 2 S(paglloss) = I(A; B)
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. Overview

» A simple decomposition of Minkowski spacetime .Z

l‘A

7,:t=0,x<0 = 47 :t=0,x>0

open left half-space open right half-space
e - —
U, x < —|t] U,.: x> |t
left wedge right wedge

domain of dependence of 7', .-~ *._domain of dependence of 7,
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A FUNDAMENTAL EXAMPLE

. Overview

» A simple decomposition of Minkowski spacetime .Z

* Rindler space (Rindler, 1966)

L 1 il

i g ¥
Wolfgang Rindler
(1924/05/18-2019/02/08)


https://aapt.scitation.org/doi/pdf/10.1119/1.1972547

A FUNDAMENTAL EXAMPLE

. Overview

» A simple decomposition of Minkowski spacetime .Z
* Rindler space

 The local observable algebra associated with the right (left)
wedge %, (% ,) is denoted as A, ().

« A, C A, we will learn later that A, = 2.

» Let Q be the vacuum state of a quantum field theory on .Z,, we
will determine the modular operators A, and J, for observations
in region %..

 (We do not use Carter-Penrose diagram here, because for Minkowski spacetime, a point in the diagram means SP=2 put
not RP2,)
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. Overview

* The modular operators A, and J, for observations in region %..
(Wichmann and Bisognano, 1976)

Eyvind Hugo Joseph Bisoghano

Wichmann (~1947-)
(1928/05/30-2019/02/16)


https://aip.scitation.org/doi/pdf/10.1063/1.522898

A FUNDAMENTAL EXAMPLE

. Overview

e A direct path integral approach for this problem is important in
both Unruh effect (Unruh, 1976) and Hawking radiation (Hawking.
1975, 1977)

Stephen William
Unruh Hawking
(1945/08/28-) (1942/01/08-2018/03/14)


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.14.870
https://link.springer.com/content/pdf/10.1007/BF02345020.pdf
https://link.springer.com/content/pdf/10.1007/BF02345020.pdf
https://link.springer.com/content/pdf/10.1007/BF02345020.pdf
https://link.springer.com/content/pdf/10.1007/BF02345020.pdf
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.15.2752
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. Overview

 The CPT symmetry of quantum field theory (in flat spacetime)

o Let Sy = Sy AN My = Nayiypy-oop, A€ COMPIEX
representation vector of Lorentz group

U(P)<5<a><ﬂ'>> UPy! - <i _if{' +kis odd > 0 D@ ®¢ <~’§<a>(ﬂ'>>
Na(p) 1 ifj+kiseven/ \ (-1 ® - ®¢ 0 Ny p)
5<a><ﬂ>> i <O 1> S
U(C UC —
( )<’7(0'6)(ﬂ) (©) 10 ’7(*0'[)(@

‘f<a)<ﬂ'>> _1 (C‘X’ Q¢ 0 > <‘5(a)(ﬂ'>> ( 0 1)
U T U T —> , o = d. =
( )<’7(d)(ﬁ) &) 0 (® - Q%) \MNwayp ap = Caf -1 0
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. Overview

 The CPT symmetry of quantum field theory (in flat spacetime)

o Let Sy = Sy AN My = Nayiypy-oop, A€ COMPIEX
representation vector of Lorentz group

U(}))(f(a)(ﬂ)) U(P)_l R <l |f] + k iS Odd > < 0 (—I)JC ® ® C) <5(a)(ﬂ)>

M) p) 1 ifj+kiseven/ \ (-1)¢®@ - ®¢ 0 (@) p)
| £
U(C)<§(a)(ﬂ)> U(C)‘l . <O 1> (a)(p)
@) 10/ \ndys
‘f<a)<ﬂ'>> _ <C® Q¢ 0 > <‘5(a)(ﬂ'>> ( 0 1)
U(T)< UT) ! - , Cp=Cop =
N(a)(p) 0 (® QL) \Mwp P2 \-1 0

o <5(a)<ﬁ')> o <l .'f{ +kis odd > -1/ 0 S
M) p) 1 ifj+kis even 0  (=DY) \ndp
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 The CPT symmetry of quantum field theory (in flat spacetime)

« CPT Theorem: for Lorentz covariant quantum fields ¢,, ---, y,,, if
the weak local condition (WLC)

(Q @, (x) - (x) | Q) = i (Qy(x,) ¢, (x) | Q)

holds in a (real) neighborhood of a Jost point (x; — x,, ==, x,_; — x,),
then the CPT condition

(Q @, (x) () | Q) = i (= 1D(Q |y (—x,) @, (—x) | Q)
holds everywhere.
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Overview

The CPT symmetry of quantum field theory (in flat spacetime)

CPT Theorem: for Lorentz covariant quantum fields ¢, ---, y,, if
the weak local condition (WLC)

(Q @, (x) - (x) | Q) = i (Qy(x,) ¢, (x) | Q)

holds in a (real) neighborhood of a Jost point (x; — x,, ==, x,_; — x,),
then the CPT condition

(Q @, (x) () | Q) = i (= 1D(Q |y (—x,) @, (—x) | Q)
holds everywhere.

In one sentence, CPT is always a symmetry of quantum field
theory in flat spacetime.
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. Overview

 The CPT symmetry of quantum field theory (in flat spacetime)
* The key point of the proof of the CPT theorem: in complex

Lorentz group, the PT transformation is in the same connected
component with the identity element.

« However, In D-dimensional spacetime, one needs to replace the
CPT transformation with the CRT transformation.

* R transformation: reflection of one space spatial coordinate.
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Il. Path integral approach

 “The Euclidean path integrals are an effective way to

compute the vacuum state (vacuum wave function) €2 of a
quantum field theory. ”




A FUNDAMENTAL EXAMPLE

Il. Path integral approach

e Path integral (quantum mechanics): how to calculate the
transition amplitude?

« Wave function ¥(q,?) = (q|¥P(®)); = (q,t|¥)y, where |P(?))sis
the state vector in Schrodinger representation, |¥), is the state
INn Heisenberg representation.

» One wants to calculate the transition amplitude (¥, | ¥, )y with
the knowledge of the initial state ¥,(q, #,) and the final state

¥ (q, 7).
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Il. Path integral approach

» One wants to calculate the transition amplitude (¥, | ¥, )y with
the knowledge of the initial state ¥,(q, #,) and the final state

¥ (q, 7).

 Because {|q,1)} is a complete base for every ¢, one has

Yo Yy = | daedd; g(Y, | qp 14 1 4 )4 1Y) g

= | dqydq;¥Yy(qy, 1)*(ap 1 q;, ;)Y (;, 1)

* The path integral tells us how to calculate the integral kernel
(propagator)

q(t)=q; i I
(qp: 1] q;, 1;) = I [dq()] exp %[ dr L(q,q)
q(t,)=q; i li
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Il. Path integral approach
* Now let us “remove” (¥, | in the formula, then we have

(V)= dq,dq; | qy, ff)(‘lfafﬂqi» X 41 Y )

dqedq; |95 1:)(qy, 1| q;, 1)V (q;, 1)

i q(t)=q; i (¥
d‘lquij l[dq(?)] exp %J dt L(q,q) | ¥,(q; )4y %)
l; _

q(t)=q;
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Il. Path integral approach

* Now let us “remove” (¥, | in the formula, then we have

q(t,)=qy i (%
(V)= ququi[ [dq()] exp %[ dt L(q,q) | ¥,(q; 1) | qp 1)
q(1)=q; | _

* And the wave function of the state |W,), is given by
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* Now let us “remove” (¥, | in the formula, then we have
q(t)=q, W Jt ]

f
RV ququ,-[ [dq(D)] exp P dt L(q,q) | ¥,(q; 1) | qp 1)
q(%;)=q; t

* And the wave function of the state |W,), is given by
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* Now let us “remove” (¥, | in the formula, then we have
q(t)=q, W Jt ]

f
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q(%;)=q; t

* And the wave function of the state |W,), is given by
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Il. Path integral approach

* Now let us “remove” (¥, | in the formula, then we have
q(t)=q, W Jt ]

f
RV ququ,-[ [dq(D)] exp P dt L(q,q) | ¥,(q; 1) | qp 1)
q(%;)=q; t

* And the wave function of the state |W,), is given by
\Pl(qa t) = <q7 l | \P1>H — dqquz <q9 l | qfv t><qfa l | q; ti>\P1(qi’ ti)

ra(n=q i (!
= qui‘l’l(qi, ;) [dq(n)] exp EJ dt L(q,q)
Y q(7)=q; l;

« So we can also formally define |W,), by an path integral:

Y1)y = | dq;'Y (q;, fi)[ [dq(?)] e
. q(7)=q;
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Il. Path integral approach

 From quantum mechanics to quantum field theory
q@), 1} - {ek), 2}
* The transition amplitude is
Y2 Yy = Ki%cﬂflzf) (@co,-lzi) H(Y2 | @) (@rl 0) (0 | ¥ 1) m
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Il. Path integral approach

 From quantum mechanics to quantum field theory
q@), 1} - {ek), 2}
* The transition amplitude IS
<@¢f|2f> (@co,-lzi) H(Yo | o) oel )0 | ¥ )y

H(‘I'z | ‘P1>H =

&d

(940]”) (9%‘) \Pf[ﬁﬂf]qﬁ[%]

"(p(Zf)=(pf

P(X)=0;

l

[Delexp [E [d“xff (¢, %0)]
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* The transition amplitude IS
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Il. Path integral approach

 From quantum mechanics to quantum field theory
q@), 1} - {ek), 2}
* The transition amplitude IS
YY)y = <@§0f|2f> (@co,-lzi) H(Yo | o) oel )0 | ¥ )y

" P(Zp)=0;
— (9@) (9%) ‘Pf[gaf]‘Pl[gol-]“ [Deplexp [ [d%ff(go 0 go)]
. P(X)=¢; h
e Again, the wave function(al) and state is
" rp(X)=¢
Yipl = [ (2¢;) Pl [@w]eXp[ d“xo?(co 0 co)]
. Yo(Z)=p;
1Py = | (D9;) Plo)] (Dple’S™
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Il. Path integral approach

 Vacuum to vacuum amplitude
() Lo t)) = Y (1) | n)(n [ m)(m | (1)

=) <<of<6> ™| n)(n| mY(m| e ] g 0)) = Y e~ Bt (0) | n)(n | m)(m | p(0))

n,m

o« S0 (@H0) | p(—0)) = (pA0) [ Q)(Q| ¢, 0)) for any (¢,(0) |, which
gives | p(—)) x | Q).
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Il. Path integral approach

* This result tells us that the path integral on the half-space r < 0
as a functional of the boundary values of the fields ¢(0) gives a
way to compute the vacuum wave functional Q[¢].
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Il. Path integral approach

* This result tells us that the path integral on the half-space r < 0
as a functional of the boundary values of the fields ¢(0) gives a
way to compute the vacuum wave functional Q[¢].

Q] « (¢(0) | p(—0))

¢(0)
= [ [Deplexp

l

0
- J dtJd&Ef(qo, J,9)
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* From Minkowski metric to Euclidean metric: t - — it

,4 1 ’
Konrad Osterwalder Robert Schrader
(1942/07/03-) (1939/09/12-2015/11/29)
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PE(X, 1) = @py(x, it Im 1 1
Pu(%,7) = Pp(x, — i) _—
eiS/h N e—S/h <
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A FUNDAMENTAL EXAMPLE

Il. Path integral approach

* From Minkowski metric to Euclidean metric: t - — it

e The vacuum wave functional can be calculated with Euclidean
path integral.

 |If the Hilbert space # of a quantum field theory can be
factorizedas # = #, Q # ., where 7 , and 7 , are Hilbert

spaces of degrees of freedom located at left-wedge and right-
wedge, respectively, what we want to calculate is the partial
trace over # , of the density matrix |Q)(Q].

p,=Try, | QNQ| =
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Il. Path integral approach

* The boundary condition ¢ of the quantum fields at 7 = 0 can be
separated to the boundary conditions on the left half-space ¢,

and the boundary conditions on the left half-space ¢,.
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* The boundary condition ¢ of the quantum fields at 7 = 0 can be
separated to the boundary conditions on the left half-space ¢,
and the boundary conditions on the left half-space ¢,.
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Il. Path integral approach

* The boundary condition ¢ of the quantum fields at 7 = 0 can be
separated to the boundary conditions on the left half-space ¢,

and the boundary conditions on the left half-space ¢,.

» So the gluing gives a spacetime W,_(wedge-2rx), a copy of
Euclidean space except that it has been “cut” along the half-
hyperplane 7 = 0, x > 0.

* In this path integral, the ¢, and ¢, are the boundary values below
and above the cut.

 How to calculate the path integral?
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» Considering the wedge W, of opening angle 6.

 Euclidean rotation

R (r)z cosfd sind <T)
O\x —sin@ cos@ /) \X




A FUNDAMENTAL EXAMPLE
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» Considering the wedge W, of opening angle 6.
 Euclidean rotation
7\ [ cos@ smmb@)\ (7
Ro (x) B (—sin@ cos@) <x)

 The path integral is in fact the matrix element of the (real or
imaginary) time translation operator

* The operator translates the initial value surface to the final
surface.
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Il. Path integral approach

» Considering the wedge W, of opening angle 6.
 Euclidean rotation
7\ [ cos@ smmb@)\ (7
Ro <x> B (—sin@ cos@) <x)

 The path integral is in fact the matrix element of the (real or

imaginary) time translation operator
@(Tr)=q
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* The operator translates the initial value surface to the final
surface.
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Il. Path integral approach
» Considering the wedge W, of opening angle 6.

 Euclidean rotation
R <T> _ cosfd sind <T)
O\x —sin@ cos@ /) \X

 The path integral is in fact the matrix element of the (real or

imaginary) time translation operator
§0(Tf)=§0f

<(pf(x, Tf) | qol-(x, Tl-)> — J [@qﬂ]e—S/fl
P(7)=;

<€0f(x7 Tf) | Cﬂi(.x, Ti)> — <q0f(xv0) | U(Tfao) U(O’Ti) | ¢i(x70)> — <€0f(x70) | exp(_ﬂ(ff _ Ti)) | gﬂi(x,()»

* The operator translates the initial value surface to the final
surface.
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Il. Path integral approach

* Going back to Minkowski spacetime t = ir:

R (t) LR <T> _ [ tcosO+xsind \ _ iR(O)t
O \x O\x —7sin @ + x cos @ R(O)x

. RO =—itcos@ —ixsinf =tcosfd —ixsinf
RO)x = —7sinf@+ xcosf = —irsin@ + xsind

t\ [ cos® —isin@) (¢\ _ [cosh(—if) sinh(—i0)\ /¢
= Ry <x> - <—isin6’ cos 0 > (x) - (sinh(—ié’) cosh(—i9)> <x>

» So the wedge path integral W, in Euclidean space is a Lorentz
boost of the r — x plane by an imaginary boost parameter —i6.



A FUNDAMENTAL EXAMPLE

Il. Path integral approach

* One can formally separate the boost generator to the left half-
space part K, and the right half-space part X..

0 - 0
K, = J dx | dP~ %y (—x)T™ = — ‘A dedD_zy xT%

+00 .
K =[ dx | dP~%y xT™ ¢ 4

T TS T
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Il. Path integral approach

* One can formally separate the boost generator to the left half-
space part K, and the right half-space part X..

» Although K = K, — K, is a well-defined operator, K, and K, have
well-defined matrix elements (y| K, |y) and (y| K. |y) between
suitable Hilbert space states |y) and |y), if one tries to compute
the norm of the state K, | y) or K. | ), one will find a universal UV-
divergence near x = 0, independent of the choice of | y).

» This is related to the fact that the factorization 7 = #, Q # , is
not really correct.
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Il. Path integral approach

* The unitary operator generated by the self-adjoint operator K
with a real boost parameter # is exp(—inK).

« When n = —i6, the operator becomes exp(—0K).

» So in real time language, the path integral on the wedge W,
constructs the operator exp(—0K.).

» To get the reduced density matrix p,, we need to set 0 = 2x:

p, = exp(—2zK,)
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Il. Path integral approach

» With the assumption that 7 = #, ® # . (which is not correct),
we have (because [K,, K] = 0)

Ag =p, ® p.' = exp(—2nK,)exp(27K,) = exp(—2zK)
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Il. Path integral approach

» Next, let us consider a state a| Q) witha € ..

 We assume that the local operator is given by fields without
smearing in time.

* Then the state can be given by a path integral on the lower half-
space with operator a inserted on the right half of the boundary.

T A
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Il. Path integral approach

« Consider Aja|Q) = exp(2rnaK,)exp(—2raK,)a|2)

a|Q) > A%a|Q)
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« Ifa=1/2, one has Aja|Q) = exp(nK,)exp(—zK,)a|Q)
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Il. Path integral approach
« Ifa=1/2, one has Aja|Q) = exp(nK,)exp(—zK,)a|Q)

T 4 T 4

al|Q) - Alla|Q)
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Il. Path integral approach
o If @ = 1/2, one has Aj*a| Q) = exp(zK,)exp(—zK, )a| Q)

 Soa = Al“ais alocal operator in 2.

* One can not go to the region a > 1/2, otherwise the operator a
will be removed from the path integral.

» So A% is holomorphic in —1/2 < Imz < 0 and continuous on the
boundary of this strip.



A FUNDAMENTAL EXAMPLE

Il. Path integral approach
 Now we determine the modular conjugation operator J,.
So = JoAY”
a'|Q) = Spa|Q) = JoAga| Q) = Joa | Q)
* For simplicity, we consider a QFT of single Hermitian scalar field
@1, X, )
o |t suffices to check Sqp(0,x,y) | Q) and Sa@(0,x,y) | €2).
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Il. Path integral approach

* For simplicity, we consider a QFT of single Hermitian scalar field
(1, x,y).

 Because they are Hermitian field, whose conjugation are
themselves

Sow(0,x5,5) | Q) = p(0,x,y)" | Q) = p(0,x,y) | Q)
So@(0,x,5) | Q) = ¢(0,x,y)" | Q) = @(0,x,y) | Q)

 We have already known that
AG*p0.x,y) | Q) = 90, — x,y) | Q)
A p(0.x,y) | Q) = — @0, — x,y) | Q)

« Thereis atypo in Eq. (5.13) in the original paper.
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(1, x,y).

« Because S, = JoA1?, one has
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Il. Path integral approach

* For simplicity, we consider a QFT of single Hermitian scalar field
(1, x,y).

« Because S, = JoA1?, one has

Jop0.x, 5" = (0, — x,y)
JQ¢(O,X, y)Jél — = Q(O, — X, y)
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Il. Path integral approach

* For simplicity, we consider a QFT of single Hermitian scalar field
(1, x,y).

« Because S, = JoAYZ?, one has
Jop0.x,y)Jg' = (0, = x,y)
JQ¢(O,X, y)Jél — = Q(O, — X, y)

e ThisresultmeansJo: t—=> —-f,x—=> —x,y =Yy

« So the modular conjugation operator is just the CR, T
transformation.
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 Why CRT but not RT ?
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Il. Path integral approach
 Why CRT but not RT ?

* Suppose we have two Hermitian scalar fields and there is an
SO(2) (U(1)) conservation charge Q = [dde_2y(q01qb2 — @), the

modular conjugation J, maps the conservation charge to
JoQlg' = -0

 The CRT is a universal symmetry of relativistic quantum field
theory, while there is no symmetry corresponding to RT.



A FUNDAMENTAL EXAMPLE

Il. Path integral approach

» We verify the deeper properties of the modular operator A, and
the modular conjugation J, explicitly:

- AB: Lorentz boost with real boost factor 2zs;
- A5 A, - Ay and AY : A, — A, are automorphisms;

- Jo=CRTand J,: A, < A exchanges the two wedge algebras.



A FUNDAMENTAL EXAMPLE

Il. Path integral approach

» We verify the deeper properties of the modular operator A, and
the modular conjugation J, explicitly:

- AB: Lorentz boost with real boost factor 2zs;
- A5 A, - Ay and AY : A, — A, are automorphisms;
- Jo=CRTand J,: A, < A exchanges the two wedge algebras.

* In Takesaki-Tomita theory, the modular conjugation J, exchanges
the algebra with its commutant , so

=A, W =2AA,

* Thus the Haag duality for complementary Rindler spacetime is
proved.



A FUNDAMENTAL EXAMPLE

lll. The approach of Bisognano and Wichmann

* The path integral method is extremely illustrating and gives the
right result, but it is not rigorous.

* The Hilbert space of quantum field theory can not be factorized
as X, Q X!

* In the rigorous proof (Bisognano and Wichmann, 1975, 197/6),
one uses holomorphy.



https://doi.org/10.1063/1.522605
https://doi.org/10.1063/1.522898

A FUNDAMENTAL EXAMPLE

lll. The approach of Bisognano and Wichmann

 In the rigorous proof, one uses holomorphy.

Arthur Strong Raymond Frederick

Wightman "Ray" Streater
(1922/05/30-2013/01/13) (1936/04/21-)



A FUNDAMENTAL EXAMPLE

lll. The approach of Bisognano and Wichmann

* We list the main result here without proof (for detail, see “PCT,
Spin and Statistics, and All That” or its Chinese translation)
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A FUNDAMENTAL EXAMPLE

lll. The approach of Bisognano and Wichmann

* We list the main result here without proof (for detail, see “PCT,
Spin and Statistics, and All That” or its Chinese translation)

* Denote the vacuum expectation values (Wightman functions) by
W (x, Xy, -+, X%,) = (]| @ (x)@y(x) @, (x,) | Q). By translation
symmetry, one has % (x;, x,, -+, x,,) = W(&,, &5, -+, &,_1), Where

& = x; — x;;1. Then there exist (the domain of holomorphy being

n; € V,) holomorphic function W(¢, —iny, ---, &, —in,_;), such
that
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A FUNDAMENTAL EXAMPLE

lll. The approach of Bisognano and Wichmann

* We list the main result here without proof (for detail, see “PCT,
Spin and Statistics, and All That” or its Chinese translation)

* Denote the vacuum expectation values (Wightman functions) by
W (x, Xy, -+, X%,) = (]| @ (x)@y(x) @, (x,) | Q). By translation
symmetry, one has % (x;, x,, -+, x,,) = W(&,, &5, -+, &,_1), Where

&; = X; — X;;1. Then there exist (the domain of holomorphy being

n; € V,) holomorphic function W(¢, —iny, ---, &, —in,_;), such
that

W(fl’ "t 5n—1) — lim +W(51 _ ir]l’ R fn—l _ ir]n—l)

st My =0


https://press.princeton.edu/books/paperback/9780691070629/pct-spin-and-statistics-and-all-that
https://press.princeton.edu/books/paperback/9780691070629/pct-spin-and-statistics-and-all-that

A FUNDAMENTAL EXAMPLE

lll. The approach of Bisognano and Wichmann

» Since J, = CRT certainly acts as Jo¢(0,x, y)J5' = (0, — x,y) and
Jo90,x, Y)J5! = — (0, — x,y), to determine A, and S, one has
to justify the claim that fora € 2,

exp(—2zK)a| Q) = a| Q)

 Here a is obtained from a by (t,x,y) — (—¢, — x,y).



A FUNDAMENTAL EXAMPLE

lll. The approach of Bisognano and Wichmann

» Since J, = CRT certainly acts as Jo¢(0,x, y)J5' = (0, — x,y) and
Jo90,x, Y)J5! = — (0, — x,y), to determine A, and S, one has
to justify the claim that fora € 2,

exp(—2zK)a| Q) = a| Q)
 Here a is obtained from a by (t,x,y) — (—¢, — x,y).

 We check it for a = @(t, x;, Y @(t5, X5, ¥5) - @(t,, X, ¥,)., Where the

pOintS P1 = (tla X1 YI)apz — (fz, X9, YZ)a S Pn = (tna Xop Yn) are all in the
right wedge %,

« SO we have x; > [1].



A FUNDAMENTAL EXAMPLE

lll. The approach of Bisognano and Wichmann

« We can take p; to be spacelike separated from each other.

* Then the field operators commute, we can order them so that

x; 2 x; for j > 1.

« Even more specially, we can restrict to x; — x; > [, — ;| for j > i.

» The states a|Q) with a of this type are dense in #Z'. (The proof is
similar to that for Reeh-Schlieder theorem. )
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e We restrictto x. — x

l

— 1| forj > i.
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lll. The approach of Bisognano and Wichmann

« Werestricttox;,—x;, > |t,— ;| forj > i.




A FUNDAMENTAL EXAMPLE

lll. The approach of Bisognano and Wichmann

* We first check the Lorentz boost exp(—2zisK) with real boost
factor s.

* It is a unitary transformation on any state a| Q).

* Because it is a Poincare transformation, its action is given by

exp(LzinK)p(X)exp(—2zinkK) = @(x(17))

* The x(») is the Lorentz transformation of the spacetime

coordinate
[t cosh(2zn) sinh(2zn) {
X01) = (x(n)) ~ \ sinh(2zn) Cosh(27m)> <x>



A FUNDAMENTAL EXAMPLE

lll. The approach of Bisognano and Wichmann

« Because the vacuum is invariant under Poincare transformation,
we have K| Q) = 0.

exp(2rinK)a| Q) = exp(LzinK)p(x,)p(Xy)- - ¢(X,) | Q)

= exp(2xinK)p(x,)exp(—2zinK) exp(LxinK)p(X,)exp(—2zinkK)--
-exp2ainK)p(x,)exp(—2xinK)exp(2rinK) | €2)

= p(X;(M)@(X,(1))-+p(X,(1)) | )

* We want to analytically continue this formulainnton =i/2
because

sinh(ix) cosh(iz)/) \X

X(i/2) <cosh(izz) sinh(izr)) (t) -



A FUNDAMENTAL EXAMPLE

lll. The approach of Bisognano and Wichmann

 We want to analytically continue this formulainnton =i/2
because

X(i/2) = <COSh(iﬂ) sinh(in)) < ;) -

sinh(iz) cosh(ix)

SO0 we need to show that when 0 < Imy < 1/2 the imaginary part
of X, — X; Is future timelike.



A FUNDAMENTAL EXAMPLE

lll. The approach of Bisognano and Wichmann

e Forn=a+ib,

cosh(2z(a + ib)) = cos(2zb)cosh(2xa) + i sin(2zb)sinh(27za)
sinh(2z(a + ib)) = cos(2zb)sinh(2za) + i sin(2zb)cosh(2za)

, cos(2zxb)cosh(2ra) + i sin(2nb)sinh(2za) cos(2zb)sinh(2za) + i sin(2zxb)cosh(2ra) \ /¢
x(a+ib) = (cos(Zﬂb)sinh(Zﬂa) + i sin(2zb)cosh(2za)  cos(2mb)cosh(27a) + isin(27rb)sinh(27m)> (x)
_ [ cos(2zb)[t cosh(2za) + x sinh(2za)] + i sin(2zb)[¢ sinh(2za) + x cosh(2za)]

B <cos(27zb)[t sinh(2za) + x cosh(2rza)] + i sin(2zb)[t cosh(2za) + x sinh(2¢m)]>

— cos(27b) (f cosh(2za) +x Sinh@ﬂd)) + isin(2b) <t sinh(2za) + x cosh(27za)>

t sinh(2za) + x cosh(2za) t cosh(2ra) + x sinh(2ra)

Im(Xj +(a+1ib) — xj(a + b)) = sin(2zb) < sinh(2za) cosh(2ﬂa)> ( i1 — tj)

cosh(2za) sinh(2za) X1 — 4
o [ Im(x; (@ + ib) — x;(a + ib)) | = sin*(2zb)[cosh*(2za) — sinh*2za)][(x;; — %)° — (1, — 1)°]

= §in*Qb)[(51 = %)% = (44 = 1)1 > 0



A FUNDAMENTAL EXAMPLE

lll. The approach of Bisognano and Wichmann

* Because the imaginary part of the coordinates are 0, we have
proved that forn =a+iband 0 < Imy < 1/2, Im(x;, | — X)) IS

timelike.

« Because 0 < b < 1/2and x;;y —x; > |t — £, the time
component of Im(x;, ; — x;) is

sin(2zb)|[(x;;; — x))cosh(2za) + (¢, — t)sinh(2za)] > 0



A FUNDAMENTAL EXAMPLE

lll. The approach of Bisognano and Wichmann

* Because the imaginary part of the coordinates are 0, we have
proved that forn =a+iband 0 < Imy < 1/2, Im(x;, | — X)) IS

timelike.

« Because 0 < b < 1/2and x;;y —x; > |t — £, the time
component of Im(x;, ; — x;) is

sin(2zb)|[(x;;; — x))cosh(2za) + (¢, — t)sinh(2za)] > 0

* S0 @(x1(M)P(X,(11))-+-(x,(17)) | Q) is holomorphic for
0 < Imy < 1/2 and continuous up to the boundary at Imy = 1/2.

* Then we have exp(—2zK)a|Q) = a|Q), which finishes the proof.



A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

 Unruh’s question: what is seen by an observer undergoing
constant acceleration in Minkowski spacetime?

S e
William George "Bill"
Unruh
(1945/08/28-)
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IV. An accelerating observer

 Unruh’s question: what is seen by an observer undergoing
constant acceleration in Minkowski spacetime?

- 0=UV (U,U" = UU’V U, + U°U,V U’ =2U,(U°V U’
. UV UP L U

dU’ au!
v = (U°U"0,-,0), U“Van=< o---,o)

dr  dr

dU° au! | R
g ’ 909"°9O — (U 9U 909"'9())
dr dr R




A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

 Unruh’s question: what is seen by an observer undergoing
constant acceleration in Minkowski spacetime?

- 0=UV (U,U" = UU’V U, + U°U,V U’ =2U,(U°V U’
. UV UP L U

dU’ au!
(U U'0,,0), U“Van=< , ,o,---,o)

dr dr

0 |
<dU | dU O) _ % (Ul, UO,O,"',())

O . . .
. { U°(z) = cosh(z/R) _ { T(7) = R sinh(z/R)

U'(r) = sinh(z/R) X(7) = Rcosh(z/R)



A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

 Unruh’s question: what is seen by an observer undergoing
constant acceleration in Minkowski spacetime?

TA

0y 7 Worldline of observers undergoing
constant acceleration




A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

* The observer can probe the vacuum TA
| Q) by measuring a local operator ©
and its adjoint O along its worldline.

* For simplicity, we consider the two-
point functions @ - 67 with different
orders (Q| O(x(,))0"(x(1,)) | Q) and y i

(Q] 0"(x(1,))O(x(7))) | Q). ‘
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* The observer can probe the vacuum TA
| Q) by measuring a local operator ©
and its adjoint O along its worldline.

* For simplicity, we consider the two-
point functions @ - 6" with different
orders (Q| O(x(r,)) 0" (x(z,)) | Q) and
(Q] 07 (x(2,)0(x(1))) | Q).




A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

* The observer can probe the vacuum | Q) by measuring a local
operator 0 and its adjoint O along its worldline.

* For simplicity, we consider the two-point functions O - 6" with
different orders (Q| O(x(z,))0"(x(z,)) | Q) and
(Q] 0 (x(2))0(x(1))) | Q).

e Poincare invariance tells us that these functions depend only on
the norm and the sign of the time component of x(z,) — x(z,).

» So they depend only on 7 = 7; — 7.



A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

* So we only need to consider

* The basic property of real time two-point functions in a thermal
ensemble is that there is a holomorphic function on a strip in the
complex plane whose boundary values on the two boundaries of
the strip are F(7r) and G(7).

* |In general, the width of the strip is , where f = 1/T is the inverse
temperature.

e Forget it? See
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* So we only need to consider
F(z) = (Q| 6(x(2))0"(x(0)) | Q)

* The basic property of real time two-point functions in a thermal
ensemble is that there is a holomorphic function on a strip in the
complex plane whose boundary values on the two boundaries of
the strip are F(7r) and G(7).

* |In general, the width of the strip is , where f = 1/T is the inverse
temperature.

e Forget it? See
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IV. An accelerating observer

* So we only need to consider
F(7) = (Q] 0(x(7))0"(x(0)) | Q)
G(r) = (| 0'(x(0))O(x(1)) | Q)
* The basic property of real time two-point functions in a thermal
ensemble is that there is a holomorphic function on a strip in the

complex plane whose boundary values on the two boundaries of
the strip are F(7r) and G(7).

* |In general, the width of the strip is , where f = 1/T is the inverse
temperature.

e Forget it? See
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IV. An accelerating observer

* The basic property of real time two-point functions in a thermal
ensemble is that there is a holomorphic function on a strip in the
complex plane whose boundary values on the two boundaries of
the strip are F(r) and G(7).

* We give two derivations of Unruh’s result:

1. starting in real time and deducing the holomorphic properties of
the correlation functions;

2. starting in Euclidean signature and analytically continuing back to
real time.
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e Real time method:

e Weset z/R =5+ 10 with 5,0 € R, then
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e Real time method:

e Weset z/R =5+ 10 with 5,0 € R, then

cos@coshs + isin@sinh s

x(7) = R sinh(s +i0) | _ R ( €08 @ sinh s + isinf cosh s
cosh(s + i0)

- Im(x(¢)) = Rsin @ <C03h S)
sinh s



A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

e Real time method:

e Weset z/R =5+ 10 with 5,0 € R, then

cos@coshs + isin@sinh s

x(7) = R sinh(s +i0) | _ R ( €08 @ sinh s + isinf cosh s
cosh(s + i0)

- Im(x(7)) = Rsin 6 <COSh S)

sinh s

« —Im(x(7)) is future timelike = F(r) = (Q| 0(x(7))0"(x(0)) | Q) is
holomorphic

« —Im(x(7)) is past timelike = G(7) = (Q| 07(x(0))O(x(7)) | Q) is
holomorphic
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IV. An accelerating observer

e Real time method:

» —Im(x(7)) is future timelike = F(r) = (Q| 6(x(7))0"(x(0)) | Q) is
holomorphic

« —Im(x(7)) is past timelike = G(r) = (Q| 07(x(0))O(x(7)) | Q) is
holomorphic

40
Im(x(7)) = Rsin 6 (Cf’Sh S) 271
sinh s
F(7) is holomorphic
______________ I
i G(7) is holomorphic

\ A%




A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

e Real time method:

+ G(7) = (Q| 07(x(0))O(x(7)) | Q) is holomorphic in the strip
0< <L m,whichis 0 < Imrz < zR;

« F(7) = (Q]| 0(x(7))0"(x(0)) | Q) is holomorphic in the strip
1< 0L 2r(or—2<0<0),whichis zR <Imr7 < 27zR (or
—7R < Im7 < 0).
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IV. An accelerating observer

e Real time method:

+ G(7) = (Q| 07(x(0))O(x(7)) | Q) is holomorphic in the strip
0< <L m,whichis 0 < Imrz < zR;

« F(7) = (Q]| 0(x(7))0"(x(0)) | Q) is holomorphic in the strip
1< 0L 2r(or—2<0<0),whichis zR <Imr7 < 27zR (or
—7R < Im7 < 0).

« AtImrz =0, G(z) = (Q| 07(x(0))O(x(7)) | Q) is simply the original
correlation function on the observer’s worldline.

At Imr = zR, x(7 + inR) = — X(7) IS again real, so the boundary
value G(R(s + in)) = (| 0"(x(0))O(—x(Rs)) | Q).
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IV. An accelerating observer

e Real time method:

+ G(7) = (Q| 07(x(0))O(x(7)) | Q) is holomorphic in the strip
0< <L m,whichis 0 < Imrz < zR;

« F(7) = (Q]| 0(x(7))0"(x(0)) | Q) is holomorphic in the strip
1< 0L 2r(or—2<0<0),whichis zR <Imr7 < 27zR (or
—7R < Im7 < 0).

« AtImrz =22R, F(7) = (Q| O(x())07(x(0))| Q) is simply the original
correlation function on the observer’s worldline.

e AtImrz = zR, x(t+inR) = — xX(7) IS again real, so the boundary
value F(R(s + in)) = (| O(—x(Rs))O'(x(0)) | €2).



A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

e Real time method:

* |n fact, one can define a function H(r) which is holomorphic on
the combined strip 0 < Imrz < 22R by:

G(r) 0<Imz<znR
H(r) =
F(r) nR <Imt < 2zR

40
27|
F(7) is holomorphic
______________ adl I
i G(7) is holomorphic

\ A%




A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

e Real time method:

* |n fact, one can define a function H(r) which is holomorphic on
the combined strip 0 < Imrz < 22R by:

G(r) 0<Imz<znR
H(r) =
F(r) nR <Imt < 2zR

* This is the analytic behavior of a real time two-point correlation
function in a thermal ensemble with the a strip of width 2zR, so
the temperature is T = 1/(27R).



A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

* Unruh’s temperature:

* |f the equivalence principle of General Relativity is correct, any
local measurement can not distinguish a gravitational field from
an accelerated frame.

{ i \
,‘ g L ¢
I
¥ i -
; I
: I
£ I
\ ' |
i 1. 1
A5 f .
i \ !
A ]
P ! 1
Py S S : ) v
e
ol Y =
i ‘g & ‘e ’ SR R a9 BN AT 3K 35 0
SR Vet AT R e e VDR 2 o ey

“" This compartment is at rest 20y This compartment is moving in
 in the Earth’s gravitational field. = a gravity-free environment.
N e A SIS SR N T B B e .
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IV. An accelerating observer

* Unruh’s temperature:

 Hawking radiation (non-inertial observers in strong gravitational
field)

-4 Event . °
’ / Horizon

Black hole
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* Unruh’s temperature:
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field) = what in an accelerating frame?
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IV. An accelerating observer

* Unruh’s temperature:

 Hawking radiation (non-inertial observers in strong gravitational
field) = what in an accelerating frame?

* An accelerating observer with some style of horizon should
measure the “vacuum” as a thermal ensemble.
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IV. An accelerating observer

* Unruh’s temperature:

* The simplest example: massless Hermitian scalar field two-point
correlation function.



A FUNDAMENTAL EXAMPLE
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* Unruh’s temperature:

* The simplest example: massless Hermitian scalar field two-point
correlation function.

F(r) = (Q| p(x(2)g"(x(0)) | Q) = (Q| p(x())p(x(0)) | )
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IV. An accelerating observer

* Unruh’s temperature:

* The simplest example: massless Hermitian scalar field two-point
correlation function.

F(7) = (Q| p(x(2)" (x(0)) | Q) = (Q| p(x(2))ep(x(0)) | )
_J' dD—lpdD—lq

(2m2(P-V, [AE E,

<Q | apagl“e—ip-x(r)ﬂq-X(O) | Q)
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IV. An accelerating observer

* Unruh’s temperature:

* The simplest example: massless Hermitian scalar field two-point
correlation function.

F(7) = (Q| p(x(2)" (x(0)) | Q) = (Q| p(x(2))ep(x(0)) | )
_J' dD—lpdD—lq

(2m)20-D, JAE E,

D—1 D-2 D—ZQ

=J AP —ilplU-10)+ip-x(D-X(O) _ [p dpd” %%, o —ip(Ai=Axcos py)
Cm)P-12]p| 2m)P-12p

<Q | apagl“e—ip-x(r)ﬂq-X(O) | Q)




A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

* Unruh’s temperature:

* The simplest example: massless Hermitian scalar field two-point
correlation function.

F(7) = (Q| p(x(2)p"(x(0)) | Q) = (Q] p(x(2)e(x(0)) | )
dD—lpdD—lq o 0
— J (Q|aya e P XD+ Q)
(272')2(D_1)1 /4Equ

D—1 D—Zd dD—ZQ
— J d P e—i|p|(t(T)—t(O))+ip-(X(T)—X(O)) — [p P pe—ip(At—Axcos @)
2m)P=12]p| (2m)P=12p

* The integral of the angular coordinates are

27

JdD‘ZQp=J sin” qola’qolj sin® 60261402 [ Pp—2dPp_
0 0 0



A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

* Unruh’s temperature:
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correlation function.
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IV. An accelerating observer

* Unruh’s temperature:

* The simplest example: massless Hermitian scalar field two-point
correlation function.

F(1) pP~dp [
0

2

sin®~* g,d g, -+ J Pp_2dpp_se
0

(0 9)

~ 202mP-! [0

T T

—ip(At—Axcos ¢;)

sin? =3 ¢, dg, [
0
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IV. An accelerating observer

* Unruh’s temperature:

* The simplest example: massless Hermitian scalar field two-point

correlation function.
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* Unruh’s temperature:

* The simplest example: massless Hermitian scalar field two-point
correlation function.
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* The result requires Im(Ar = Ax) < Oand D > 2
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IV. An accelerating observer

* Unruh’s temperature:

* For accelerated observers, the fluctuation function is (for D = 4)

A

+00 —ia)Td
o) = — J | e T . Imrz )|
A72R? ) __ sinh?(7/(2R) — ie) ¢
e_indT I
[I(w > 0) = — CJ; - : !
4R S SR 0 (g + )R b




A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

* Unruh’s temperature:

* For accelerated observers, the fluctuation function is (for D = 4)

e —l(UTd,z.

+00
M(w) = —
(@)=~ 1ok J_oo Sinh(z/(2R) — i€)

[I(w>0) =—

4‘) e—ia)r drt
472R? r, sinh?(z/(2R) — i¢)



A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

* Unruh’s temperature:

* For accelerated observers, the fluctuation function is (for D = 4)

oo e %t
[(w) = — J : .
A72R? ) __ sinh?(7/(2R) — ie)
@ > 0) 4‘) —i0T ]
® = —
472R? Sinhz(f/ (2R) — ie)

e—ia)z
— ReS I\ZNTTTE€ .
 4n2R2 Z =TT OR CGinh2(z/(2R) — ie)

n=1



A FUNDAMENTAL EXAMPLE
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IV. An accelerating observer

* Unruh’s temperature:

* For accelerated observers, the fluctuation function is (for D = 4)
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* This is the standard black-body spectrum (thermal) with
temperature T = 1/(2xnR).

e Thus an accelerated detector measures the vacuum as a thermal
state!
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IV. An accelerating observer

* Unruh’s temperature:

* For accelerated observers, the fluctuation function is (for D = 4)

20 1

H(G)) — T e27zRa) — 1

* This is the standard black-body spectrum (thermal) with
temperature T = 1/(2xnR).

e Thus an accelerated detector measures the vacuum as a thermal
state!
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A FUNDAMENTAL EXAMPLE

IV. An accelerating observer

* Euclidean method: (more transparent)

* The Euclidean version ( ¢tz = it ) of the worldline of the uniformly
accelerated observer is:

0\ R [ sind
x(@) )  \cosd
 The method is quite straightforward.

* |n this slides, we will ignore this method which is given shortly in
Witten’s paper.






