Entanglement properties of quantum field theory

A note of Witten's paper "APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory"

Part III: From Finite-dimensional Quantum Systems and Some Lessons to A Fundamental Example in Quantum Field Theory

Hao Zhang Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences

I. The modular operators in the finite-dimensional case

- The "representation matrices" of modular operators
- The cyclic and separating vector

$$\Psi = \operatorname{tr} \left[\begin{pmatrix} |c_1| & 0 & \cdots & 0 \\ 0 & |c_2| & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & |c_n| \end{pmatrix} \begin{pmatrix} |1, 1\rangle & |2, 1\rangle & \cdots & |n, 1\rangle \\ |1, 2\rangle & |2, 2\rangle & \cdots & |n, 2\rangle \\ \vdots & \vdots & \ddots & \vdots \\ |1, n\rangle & |2, n\rangle & \cdots & |n, n\rangle \end{pmatrix} \right]$$
$$C_{\Psi} = \rho_1^{1/2}$$

• Although $\hat{\rho}_1 \neq \hat{\rho}_2$, the "representation matrices" $\rho_1 = \rho_2$.

- The "representation matrices" of modular operators
- The modular operator

$$\Delta_{\Psi} | i, j \rangle = |c_i/c_j|^2 | i, j \rangle$$
$$\Delta_{\Psi} \Xi = \sum_{i,j=1}^n |c_i|^2 c_{ij} |c_j|^{-2} | i, j \rangle, \quad \Rightarrow \quad C_{\Xi} \to \rho_1 C_{\Xi} \rho_2^{-1}$$

- The "representation matrices" of modular operators
- The relative modular operator

$$\Delta_{\Psi|\Phi}(C_X) = \sigma_1 C_X \rho_2^{-1} = \sigma_1 C_X \rho_1^{-1}$$

- The "representation matrices" of modular operators
- The relative modular operator

$$\Delta_{\Psi|\Phi}(C_X) = \sigma_1 C_X \rho_2^{-1} = \sigma_1 C_X \rho_1^{-1}$$
$$\therefore \quad \Delta_{\Psi|\Phi}^{\alpha}(C_X) = \sigma_1^{\alpha} C_X \rho_1^{-\alpha}$$

- The "representation matrices" of modular operators
- The relative modular operator

$$\Delta_{\Psi|\Phi}(C_X) = \sigma_1 C_X \rho_2^{-1} = \sigma_1 C_X \rho_1^{-1}$$

$$\therefore \ \Delta_{\Psi|\Phi}^{\alpha}(C_X) = \sigma_1^{\alpha} C_X \rho_1^{-\alpha}$$

$$\Rightarrow \ \langle \Psi | \Delta_{\Psi|\Phi}^{\alpha} | \Psi \rangle = \operatorname{tr} \left[\rho_1^{1/2} \ \Delta_{\Psi|\Phi}^{\alpha}(C_{\Psi}) \right]$$

- The "representation matrices" of modular operators
- The relative modular operator

$$\Delta_{\Psi|\Phi}(C_X) = \sigma_1 C_X \rho_2^{-1} = \sigma_1 C_X \rho_1^{-1}$$

$$\therefore \ \Delta_{\Psi|\Phi}^{\alpha}(C_X) = \sigma_1^{\alpha} C_X \rho_1^{-\alpha}$$

$$\Rightarrow \ \langle \Psi | \Delta_{\Psi|\Phi}^{\alpha} | \Psi \rangle = \operatorname{tr} \left[\rho_1^{1/2} \ \Delta_{\Psi|\Phi}^{\alpha}(C_{\Psi}) \right]$$

$$= \operatorname{tr} \left[\rho_1^{1/2} \ \left(\sigma_1^{\alpha} \rho_1^{1/2} \rho_1^{-\alpha} \right) \right]$$

- The "representation matrices" of modular operators
- The relative modular operator

$$\Delta_{\Psi|\Phi}(C_X) = \sigma_1 C_X \rho_2^{-1} = \sigma_1 C_X \rho_1^{-1}$$

$$\therefore \ \Delta_{\Psi|\Phi}^{\alpha}(C_X) = \sigma_1^{\alpha} C_X \rho_1^{-\alpha}$$

$$\Rightarrow \langle \Psi | \Delta_{\Psi|\Phi}^{\alpha} | \Psi \rangle = \operatorname{tr} \left[\rho_1^{1/2} \ \Delta_{\Psi|\Phi}^{\alpha}(C_{\Psi}) \right]$$

$$= \operatorname{tr} \left[\rho_1^{1/2} \ \left(\sigma_1^{\alpha} \rho_1^{1/2} \rho_1^{-\alpha} \right) \right]$$

$$= \operatorname{tr} \left[\sigma_1^{\alpha} \rho_1^{1-\alpha} \right]$$

- The "representation matrices" of modular operators
- Because the bases are fixed by the "diagonalization" of the Ψ , but not Φ , one usually does not have simple relations such as $\sigma_1 = \sigma_2$.

$$\Phi = \operatorname{tr} \left[\begin{pmatrix} \langle 1, 1 | \Phi \rangle & \langle 1, 2 | \Phi \rangle & \cdots & \langle 1, n | \Phi \rangle \\ \langle 2, 1 | \Phi \rangle & \langle 2, 2 | \Phi \rangle & \cdots & \langle 2, n | \Phi \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle n, 1 | \Phi \rangle & \langle n, 2 | \Phi \rangle & \cdots & \langle n, n | \Phi \rangle \end{pmatrix} \begin{pmatrix} |1, 1 \rangle & |2, 1 \rangle & \cdots & |n, 1 \rangle \\ |1, 2 \rangle & |2, 2 \rangle & \cdots & |n, 2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ |1, n \rangle & |2, n \rangle & \cdots & |n, n \rangle \end{pmatrix} \right]$$

- If we are only interested in $\hat{\sigma}_1$ and not $\hat{\sigma}_2$, we can make any unitary transformation on \mathcal{H}_2 .
- For example, the unitary transformation: $U: \{ |\tilde{\varphi}_{\alpha}\rangle \} \rightarrow \{ |\varphi_{i}\rangle \}.$
- On the other hand, by polar decomposition theorem, one has $\Phi = PU$, where P is a positive Hermitian matrix and U is a unitary matrix which acts on \mathcal{H}_2 .
- It is obviously that $P = \sigma_1^{1/2}$. So with a unitary transformation on \mathcal{H}_2 , one has $\Phi = \sigma_1^{1/2}$.

II. The modular automorphism group

• Stone theorem (1930) and 1-parameter automorphism group:

A self-adjoint operator *A* defined on some dense subset of the Hilbert space A strong continued 1parameter unitary transformation group U(t)=exp(itA)

Marshall Harvey Stone (1903/04/08-1989/01/09)

II. The modular automorphism group

- Stone theorem (1930) and 1-parameter automorphism group
- The modular automorphism group: the self-adjoint modular operator Δ_{Ψ} generates a 1-parameter unitary transformation group by

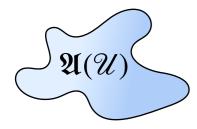
 $\Delta_{\Psi}^{is}, s \in \mathbb{R}$

II. The modular automorphism group

- Stone theorem (1930) and 1-parameter automorphism group
- The modular automorphism group: the self-adjoint modular operator Δ_{Ψ} generates a 1-parameter unitary transformation group by

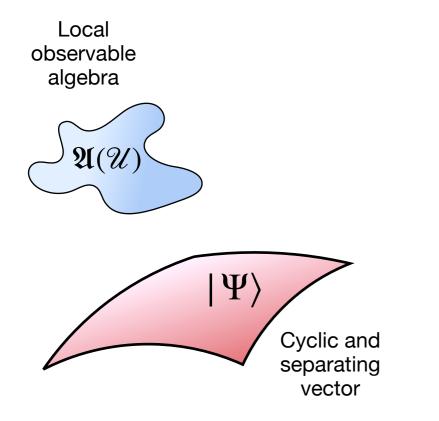
$$\Delta^{is}_{\Psi}, s \in \mathbb{R}$$

Local observable algebra

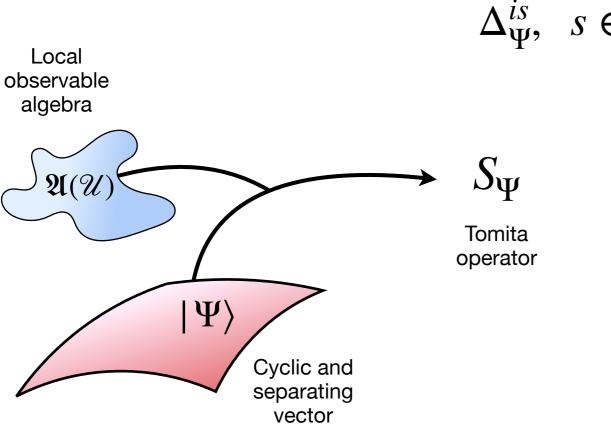


- Stone theorem (1930) and 1-parameter automorphism group
- The modular automorphism group: the self-adjoint modular operator Δ_{Ψ} generates a 1-parameter unitary transformation group by

$$\Delta_{\Psi}^{is}, s \in \mathbb{R}$$

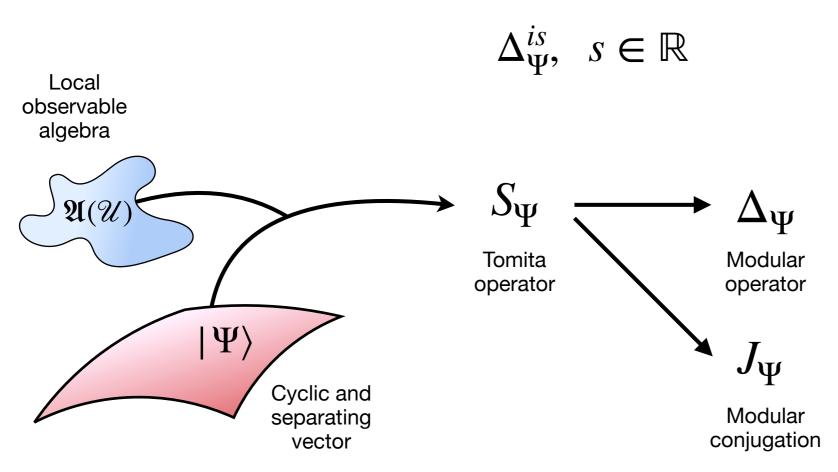


- Stone theorem (1930) and 1-parameter automorphism group
- The modular automorphism group: the self-adjoint modular operator Δ_{Ψ} generates a 1-parameter unitary transformation group by



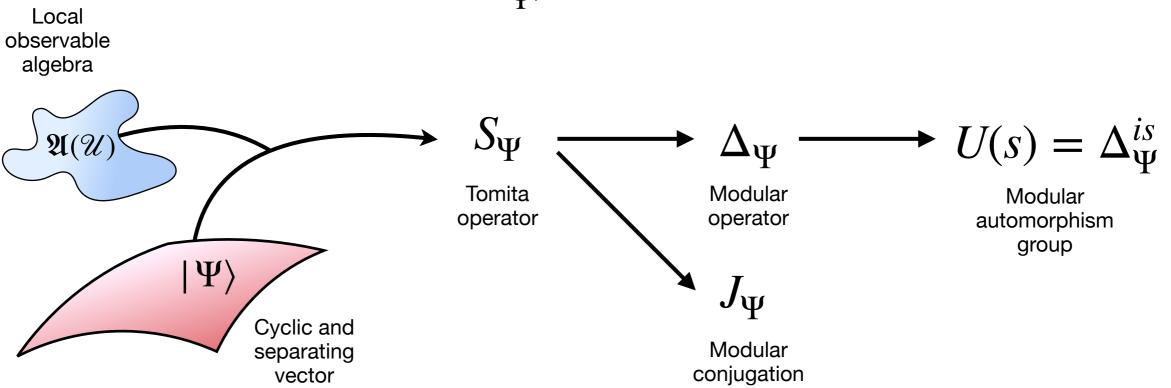
$$\Delta_{\Psi}^{is}, s \in \mathbb{R}$$

- Stone theorem (1930) and 1-parameter automorphism group
- The modular automorphism group: the self-adjoint modular operator Δ_{Ψ} generates a 1-parameter unitary transformation group by



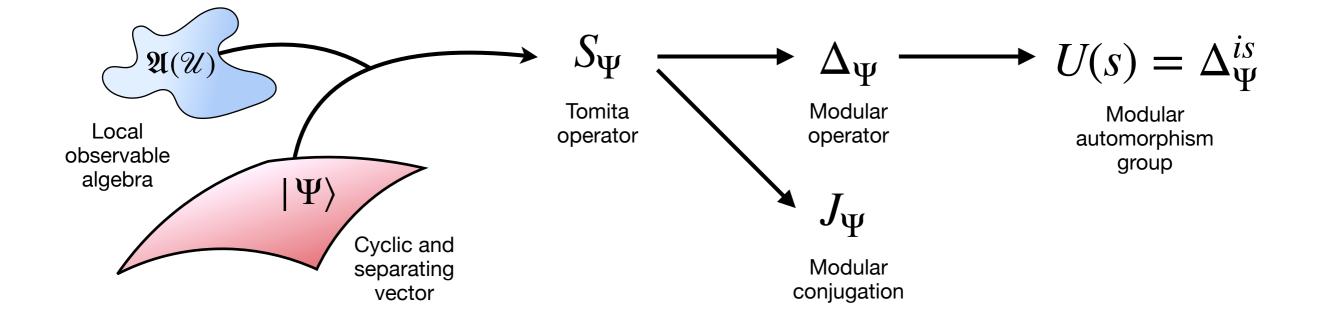
- Stone theorem (1930) and 1-parameter automorphism group
- The modular automorphism group: the self-adjoint modular operator Δ_{Ψ} generates a 1-parameter unitary transformation group by

$$\Delta_{\Psi}^{is}, s \in \mathbb{R}$$



- The properties of the modular automorphism group
 - 1. Δ_{Ψ}^{is} commutes with J_{Ψ} ;

2. Since
$$\Delta_{\Psi}^{is} = \rho_1^{is} \otimes \rho_2^{-is}$$
, for any $\mathbf{a} \otimes \mathbf{1} \in \mathfrak{A}$,
$$\Delta_{\Psi}^{is}(\mathbf{a} \otimes \mathbf{1}) \Delta_{\Psi}^{-is} = \rho_1^{is} \mathbf{a} \rho_1^{-is} \otimes \mathbf{1}$$



II. The modular automorphism group

• The properties of the modular automorphism group

1.
$$J_{\Psi}\Delta^{is}_{\Psi}J_{\Psi} = \Delta^{is}_{\Psi};$$

2.
$$\Delta_{\Psi}^{is}(\mathbf{a} \otimes \mathbf{1}) \Delta_{\Psi}^{-is} = \rho_1^{is} \mathbf{a} \rho_1^{-is} \otimes \mathbf{1};$$

3.
$$\Delta_{\Psi}^{is}$$
 $\mathfrak{A} \ \Delta_{\Psi}^{-is} = \mathfrak{A}, \ \Delta_{\Psi}^{is} \ \mathfrak{A}' \ \Delta_{\Psi}^{-is} = \mathfrak{A}';$

4. $J_{\Psi}\mathfrak{A}J_{\Psi} = \mathfrak{A}', J_{\Psi}\mathfrak{A}'J_{\Psi} = \mathfrak{A};$

II. The modular automorphism group

• The properties of the modular automorphism group

$$1. \quad J_{\Psi} \Delta_{\Psi}^{is} J_{\Psi} = \Delta_{\Psi}^{is}$$

2.
$$\Delta_{\Psi}^{is}(\mathbf{a} \otimes \mathbf{1}) \Delta_{\Psi}^{-is} = \rho_1^{is} \mathbf{a} \rho_1^{-is} \otimes \mathbf{1};$$

3.
$$\Delta_{\Psi}^{is}$$
 $\mathfrak{A} \ \Delta_{\Psi}^{-is} = \mathfrak{A}, \ \Delta_{\Psi}^{is} \ \mathfrak{A}' \ \Delta_{\Psi}^{-is} = \mathfrak{A}';$

4. $J_{\Psi}\mathfrak{A}J_{\Psi} = \mathfrak{A}', J_{\Psi}\mathfrak{A}'J_{\Psi} = \mathfrak{A};$

$$J_{\Psi}(\mathbf{a} \otimes \mathbf{1}) J_{\Psi} | i, j \rangle = J_{\Psi}(\mathbf{a} \otimes \mathbf{1}) | j, i \rangle = \sum_{k} J_{\Psi} a_{kj} | k, i \rangle = \sum_{k} \bar{a}_{kj} J_{\Psi} | k, i \rangle$$
$$= \sum_{k} \bar{a}_{kj} | i, k \rangle = (\mathbf{1} \otimes \mathbf{a}^{*}) | i, j \rangle$$

II. The modular automorphism group

• The properties of the modular automorphism group

1.
$$J_{\Psi}\Delta^{is}_{\Psi}J_{\Psi} = \Delta^{is}_{\Psi};$$

2.
$$\Delta_{\Psi}^{is}(\mathbf{a} \otimes \mathbf{1}) \Delta_{\Psi}^{-is} = \rho_1^{is} \mathbf{a} \rho_1^{-is} \otimes \mathbf{1};$$

3.
$$\Delta_{\Psi}^{is}$$
 $\mathfrak{A} \ \Delta_{\Psi}^{-is} = \mathfrak{A}, \ \Delta_{\Psi}^{is} \ \mathfrak{A}' \ \Delta_{\Psi}^{-is} = \mathfrak{A}';$

4. $J_{\Psi}\mathfrak{A}J_{\Psi} = \mathfrak{A}', J_{\Psi}\mathfrak{A}'J_{\Psi} = \mathfrak{A};$

5. $J_{\Psi}(\mathbf{a} \otimes \mathbf{1})J_{\Psi} = \mathbf{1} \otimes \mathbf{a}^*, \ J_{\Psi}(\mathbf{1} \otimes \mathbf{a})J_{\Psi} = \mathbf{a}^* \otimes \mathbf{1};$

II. The modular automorphism group

• The group generated by relative modular operator is called "relative modular group"

$$\Delta_{\Psi|\Phi}^{is}(\mathbf{a}\otimes\mathbf{1})\Delta_{\Psi|\Phi}^{-is}=\sigma_1^{is}\mathbf{a}\sigma_1^{-is}\otimes\mathbf{1}$$

• The relative modular group also has properties

1.
$$\Delta_{\Psi|\Phi}^{is}$$
 $\mathfrak{A} \ \Delta_{\Psi|\Phi}^{-is} = \mathfrak{A}, \ \Delta_{\Psi|\Phi}^{is} \ \mathfrak{A}' \ \Delta_{\Psi|\Phi}^{-is} = \mathfrak{A}';$

2.
$$J_{\Psi|\Phi}\mathfrak{A} J_{\Psi|\Phi} = \mathfrak{A}', \ J_{\Psi|\Phi}\mathfrak{A}' J_{\Psi|\Phi} = \mathfrak{A};$$

3.
$$J_{\Psi|\Phi}(\mathbf{a} \otimes \mathbf{1})J_{\Psi|\Phi} = \mathbf{1} \otimes \mathbf{a}^*, \ J_{\Psi|\Phi}(\mathbf{1} \otimes \mathbf{a})J_{\Psi|\Phi} = \mathbf{a}^* \otimes \mathbf{1};$$

II. The modular automorphism group

• The group generated by relative modular operator is called "relative modular group"

$$\Delta_{\Psi|\Phi}^{is}(\mathbf{a}\otimes\mathbf{1})\Delta_{\Psi|\Phi}^{-is}=\sigma_1^{is}\mathbf{a}\sigma_1^{-is}\otimes\mathbf{1}$$

• The relative modular group also has properties

1.
$$\Delta_{\Psi|\Phi}^{is}$$
 $\mathfrak{A} \ \Delta_{\Psi|\Phi}^{-is} = \mathfrak{A}, \ \Delta_{\Psi|\Phi}^{is} \ \mathfrak{A}' \ \Delta_{\Psi|\Phi}^{-is} = \mathfrak{A}';$

2.
$$J_{\Psi|\Phi}\mathfrak{A} J_{\Psi|\Phi} = \mathfrak{A}', \ J_{\Psi|\Phi}\mathfrak{A}' J_{\Psi|\Phi} = \mathfrak{A};$$

3.
$$J_{\Psi|\Phi}(\mathbf{a} \otimes \mathbf{1})J_{\Psi|\Phi} = \mathbf{1} \otimes \mathbf{a}^*, \ J_{\Psi|\Phi}(\mathbf{1} \otimes \mathbf{a})J_{\Psi|\Phi} = \mathbf{a}^* \otimes \mathbf{1}.$$

• And $\Delta^{is}_{\Psi|\Phi}(\mathbf{a} \otimes \mathbf{1}) \Delta^{-is}_{\Psi|\Phi} = \Delta^{is}_{\Psi'|\Phi}(\mathbf{a} \otimes \mathbf{1}) \Delta^{-is}_{\Psi'|\Phi}$

II. The modular automorphism group

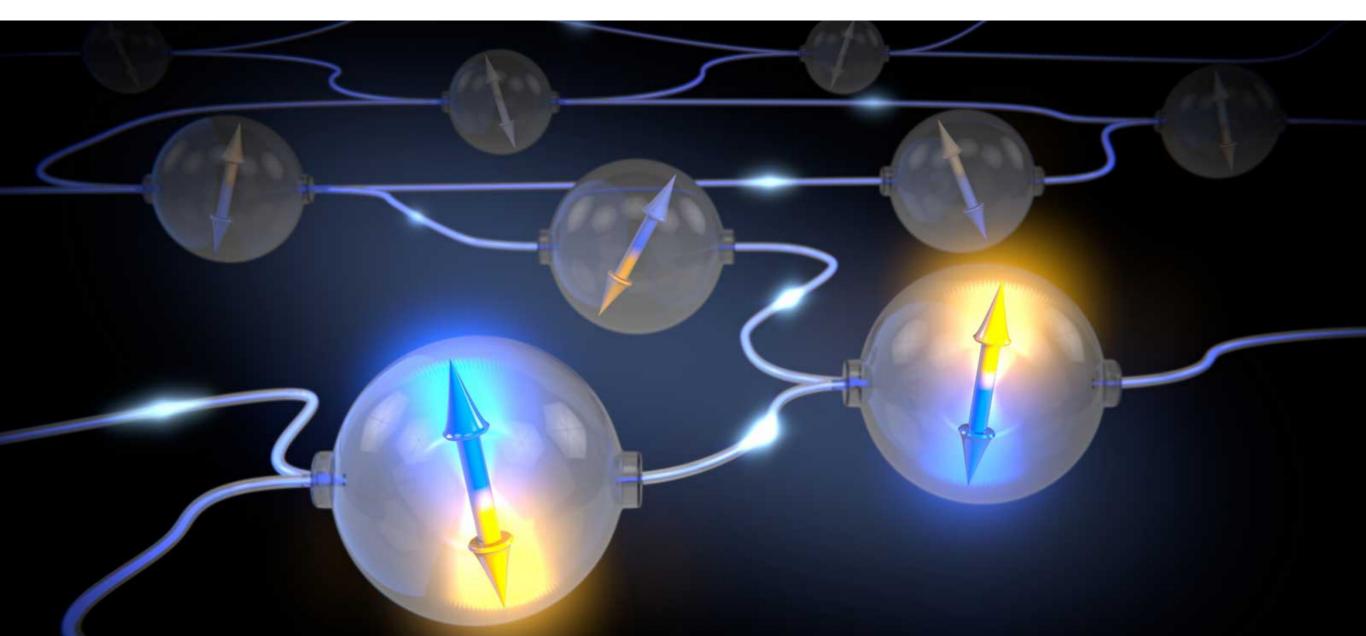
- These properties are main theorems of Tomita-Takesaki theory
- The theorems are also true for general infinite-dimensional von Neumann algebras with cyclic separating vectors
- They are not easy to prove

Minoru Tomita 冨田 稔 (1924/02/06-2015/10/09)

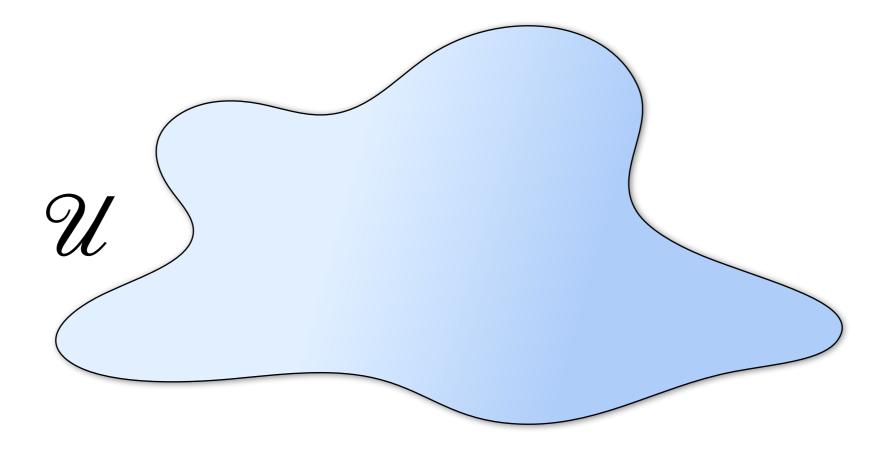
Masamichi Takesaki 竹崎正道 (1933/07/18-)

II. The modular automorphism group

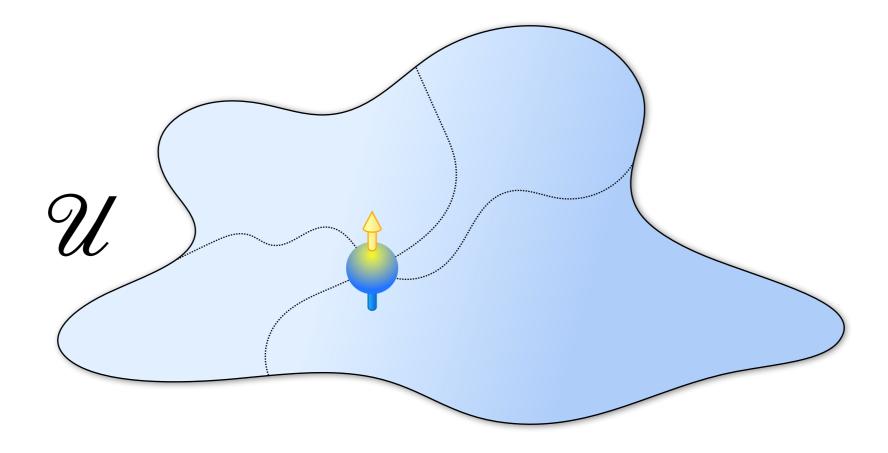
- A relatively simple case: the infinite-dimensional algebra ${\mathfrak A}$ is a limit of matrix algebras



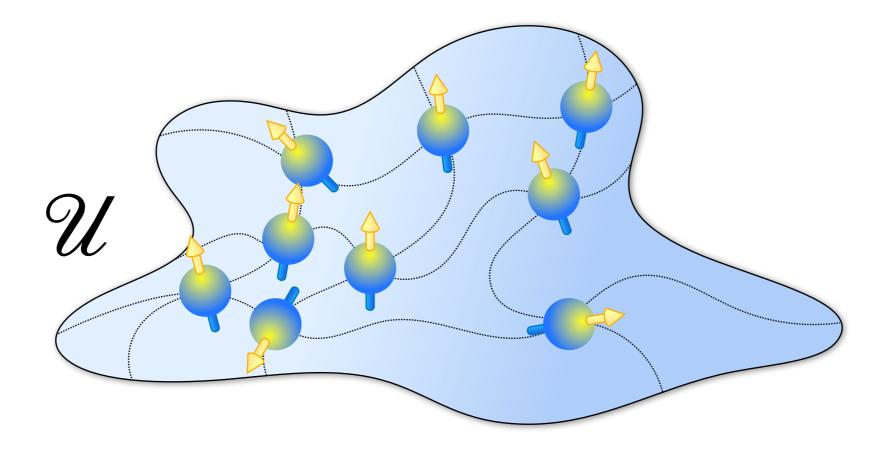
- A relatively simple case: the infinite-dimensional algebra A is a limit of matrix algebras
- One may think the degrees of freedom in region ${\mathscr U}$ as an infinite collection of qubits.



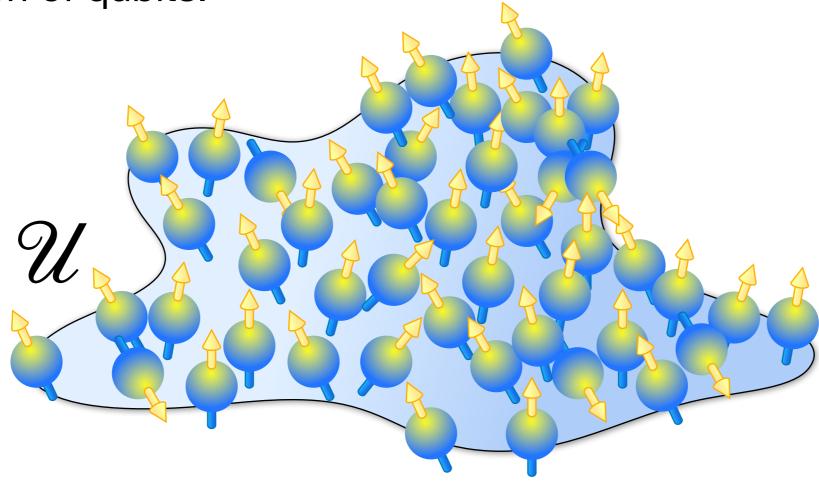
- A relatively simple case: the infinite-dimensional algebra A is a limit of matrix algebras
- One may think the degrees of freedom in region ${\mathscr U}$ as an infinite collection of qubits.



- A relatively simple case: the infinite-dimensional algebra A is a limit of matrix algebras
- One may think the degrees of freedom in region ${\mathscr U}$ as an infinite collection of qubits.



- A relatively simple case: the infinite-dimensional algebra A is a limit of matrix algebras
- One may think the degrees of freedom in region \mathscr{U} as an infinite collection of qubits.



- A relatively simple case: the infinite-dimensional algebra A is a limit of matrix algebras
- One may think the degrees of freedom in region \mathscr{U} as an infinite collection of qubits. (Longo, 1978)

$$\mathfrak{M}_1 \subset \mathfrak{M}_2 \subset \cdots \subset \mathfrak{M}_n \subset \cdots \subset \mathfrak{A}(\mathcal{U})$$

- This is believed that this picture is rigorously valid in quantum field theory.
- At each finite step in this chain, one defines an approximation $\Delta_{\Psi}^{(n)}$ to the modular operator (or similarly to J_{Ψ} or $\Delta_{\Psi|\Phi}$)

- The domain of Δ_{Ψ}^{is} to the modular operator (or $\Delta_{\Psi|\Phi}^{is}$):
 - For a matrix algebra, $\Delta_{\Psi}^{iz} = \exp(iz \log \Delta_{\Psi})$ is an **entire matrix**valued function of *z*;

- The domain of Δ_{Ψ}^{is} (or $\Delta_{\Psi|\Phi}^{is}$):
 - For a matrix algebra, $\Delta_{\Psi}^{iz} = \exp(iz \log \Delta_{\Psi})$ is an **entire matrix**valued function of *z*;
 - In quantum field theory, Δ_{Ψ} is unbounded and the analytic properties of $\Delta_{\Psi}^{iz} |\psi\rangle$ for a state $|\psi\rangle$ depend very much on $|\psi\rangle$:
 - One can find $|\psi\rangle$ such that $\Delta_{\psi}^{iz}|\psi\rangle$ in entire in *z*;
 - One may also find some extreme $|\psi\rangle$ on which $\Delta_{\Psi}^{iz}|\psi\rangle$ can only be defined for real *z*.

- The domain of Δ^{is}_{Ψ} (or $\Delta^{is}_{\Psi|\Phi}$)
- How about the domain when Δ^{is}_Ψ acts on a |Ψ⟩ (a ∈ 𝔄 or a' |Ψ⟩, a' ∈ 𝔄')?

- The domain of Δ^{is}_{Ψ} (or $\Delta^{is}_{\Psi|\Phi}$)
- How about the domain when Δ^{is}_Ψ acts on a |Ψ⟩ (a ∈ 𝔄 or a' |Ψ⟩, a' ∈ 𝔄')?

$$\left|\Delta_{\Psi}^{1/2}\mathbf{a} |\Psi\rangle\right|^{2} = \left\langle\Delta_{\Psi}^{1/2}\mathbf{a}\Psi\right|\Delta_{\Psi}^{1/2}\mathbf{a}\Psi\right\rangle = \left\langle\mathbf{a}\Psi\right|\Delta_{\Psi}|\mathbf{a}\Psi\rangle$$

- The domain of Δ^{is}_{Ψ} (or $\Delta^{is}_{\Psi|\Phi}$)
- How about the domain when Δ^{is}_Ψ acts on a |Ψ⟩ (a ∈ 𝔄 or a' |Ψ⟩, a' ∈ 𝔄')?

$$\left| \Delta_{\Psi}^{1/2} \mathbf{a} | \Psi \rangle \right|^{2} = \left\langle \Delta_{\Psi}^{1/2} \mathbf{a} \Psi | \Delta_{\Psi}^{1/2} \mathbf{a} \Psi \rangle = \left\langle \mathbf{a} \Psi | \Delta_{\Psi} | \mathbf{a} \Psi \right\rangle$$
$$= \left\langle \mathbf{a} \Psi | S_{\Psi}^{\dagger} S_{\Psi} | \mathbf{a} \Psi \right\rangle = \overline{\left\langle S_{\Psi} \mathbf{a} \Psi | S_{\Psi} \mathbf{a} \Psi \right\rangle}$$

- The domain of Δ_{Ψ}^{is} (or $\Delta_{\Psi|\Phi}^{is}$)
- How about the domain when Δ^{is}_Ψ acts on a |Ψ⟩ (a ∈ 𝔄 or a' |Ψ⟩, a' ∈ 𝔄')?

$$\Delta_{\Psi}^{1/2} \mathbf{a} |\Psi\rangle \Big|^{2} = \langle \Delta_{\Psi}^{1/2} \mathbf{a} \Psi | \Delta_{\Psi}^{1/2} \mathbf{a} \Psi\rangle = \langle \mathbf{a} \Psi | \Delta_{\Psi} | \mathbf{a} \Psi\rangle$$
$$= \langle \mathbf{a} \Psi | S_{\Psi}^{\dagger} S_{\Psi} | \mathbf{a} \Psi\rangle = \overline{\langle S_{\Psi} \mathbf{a} \Psi | S_{\Psi} \mathbf{a} \Psi\rangle}$$
$$= \overline{\langle \mathbf{a}^{\dagger} \Psi | \mathbf{a}^{\dagger} \Psi\rangle} < \infty$$

II. The modular automorphism group

- The domain of Δ_{Ψ}^{is} (or $\Delta_{\Psi|\Phi}^{is}$)
- How about the domain when Δ^{is}_Ψ acts on a |Ψ⟩ (a ∈ 𝔄 or a' |Ψ⟩, a' ∈ 𝔄')?

$$\Delta_{\Psi}^{1/2} \mathbf{a} \,|\,\Psi\rangle \,\Big|^{\,2} = \overline{\langle \mathbf{a}^{\dagger} \Psi \,|\, \mathbf{a}^{\dagger} \Psi\rangle} < \infty$$

• Because $\lambda^r < \lambda + 1$ ($0 \le r \le 1$) for a positive real number λ implies $\Delta_{\Psi}^r < \Delta_{\Psi} + 1$,

II. The modular automorphism group

- The domain of Δ_{Ψ}^{is} (or $\Delta_{\Psi|\Phi}^{is}$)
- How about the domain when Δ^{is}_Ψ acts on a |Ψ⟩ (a ∈ 𝔄 or a' |Ψ⟩, a' ∈ 𝔄')?

$$\Delta_{\Psi}^{1/2} \mathbf{a} \,|\,\Psi\rangle \,\Big|^{2} = \overline{\langle \mathbf{a}^{\dagger} \Psi \,|\, \mathbf{a}^{\dagger} \Psi\rangle} < \infty$$

• Because $\lambda^r < \lambda + 1$ ($0 \le r \le 1$) for a positive real number λ implies $\Delta_{\Psi}^r < \Delta_{\Psi} + 1$,

$$\begin{split} \langle \Delta_{\Psi}^{r/2} \mathbf{a} \Psi \, | \, \Delta_{\Psi}^{r/2} \mathbf{a} \Psi \rangle &< \langle \Delta_{\Psi}^{1/2} \mathbf{a} \Psi \, | \, \Delta_{\Psi}^{1/2} \mathbf{a} \Psi \rangle + \langle \mathbf{a} \Psi \, | \, \mathbf{a} \Psi \rangle < \infty \\ 0 \leqslant r \leqslant 1 \end{split}$$

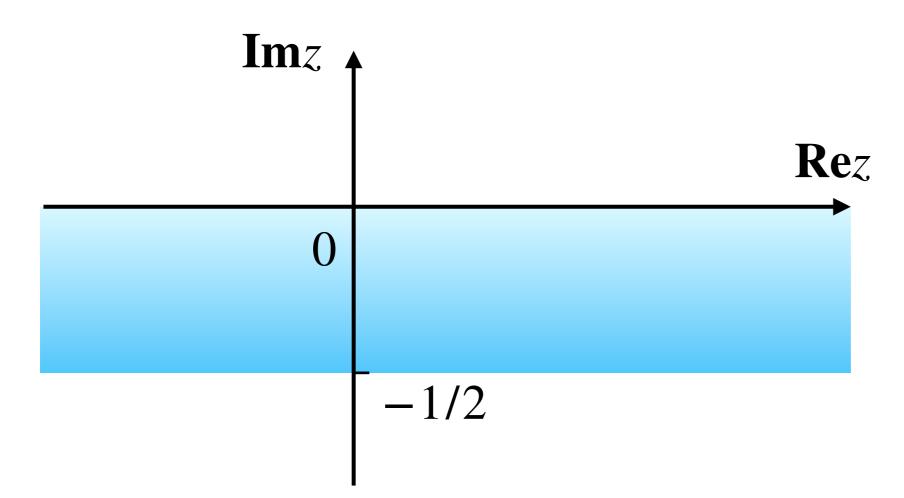
- The domain of Δ_{Ψ}^{is} (or $\Delta_{\Psi|\Phi}^{is}$)
- How about the domain when Δ^{is}_Ψ acts on a |Ψ⟩ (a ∈ 𝔄 or a' |Ψ⟩, a' ∈ 𝔄')?
- The unitary operator Δ^{is}_Ψ (s ∈ ℝ) does not change the norm of a state, so for 0 ≤ r ≤ 1/2, s ∈ ℝ,

$$\left|\Delta_{\Psi}^{r+is}\mathbf{a}\Psi\right|^{2}<\infty$$

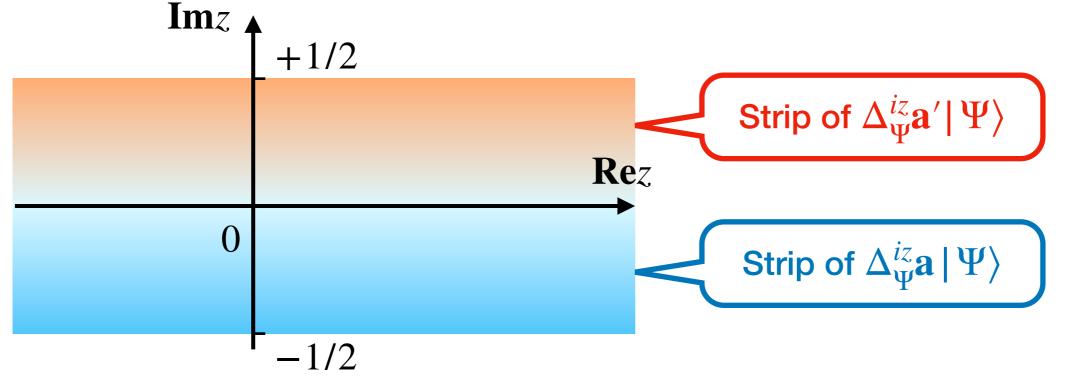
- The domain of Δ_{Ψ}^{is} (or $\Delta_{\Psi|\Phi}^{is}$)
- How about the domain when Δ^{is}_Ψ acts on a |Ψ⟩ (a ∈ 𝔄 or a' |Ψ⟩, a' ∈ 𝔄')?
- The unitary operator Δ_{Ψ}^{is} ($s \in \mathbb{R}$) does not change the norm of a state, so for $0 \leq r \leq 1/2$, $s \in \mathbb{R}$, In Witten's paper, there is a typo below equation (4.41).

$$\Delta_{\Psi}^{r+is} \mathbf{a} \Psi \Big|^2 < \infty$$

- The domain of Δ_{Ψ}^{is} (or $\Delta_{\Psi|\Phi}^{is}$)
- $\Delta_{\Psi}^{iz} \mathbf{a} |\Psi\rangle$ is continuous in the strip $0 \ge \mathbf{Im}_z \ge -1/2$ and holomorphic in the interior of the strip.



- The domain of Δ_{Ψ}^{is} (or $\Delta_{\Psi|\Phi}^{is}$)
- $\Delta_{\Psi}^{iz} \mathbf{a} |\Psi\rangle$ is continuous in the strip $0 \ge \mathbf{Im}_z \ge -1/2$ and holomorphic in the interior of the strip.
- $\Delta_{\Psi}^{iz} \mathbf{a}' |\Psi\rangle$ is continuous in the strip $1/2 \ge \mathbf{Im}_z \ge 0$ and holomorphic in the interior of the strip.



- The domain of Δ^{is}_{Ψ} (or $\Delta^{is}_{\Psi|\Phi}$)
- $\Delta_{\Psi}^{iz} \mathbf{a} |\Psi\rangle$ and $\Delta_{\Psi}^{iz} \mathbf{a}' |\Psi\rangle$ cannot be continued outside the strips.

- The analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- Why should we be interested in these functions?

- The analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- Why should we be interested in these functions?
- They are "two-point correlation functions" on the cyclic separating state $|\Psi\rangle$ with Δ_{Ψ}^{iz} insertion.

- The analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- For real *z*, it is certainly well-defined
- For $z = s ir (s, r \in \mathbb{R})$,

II. The modular automorphism group

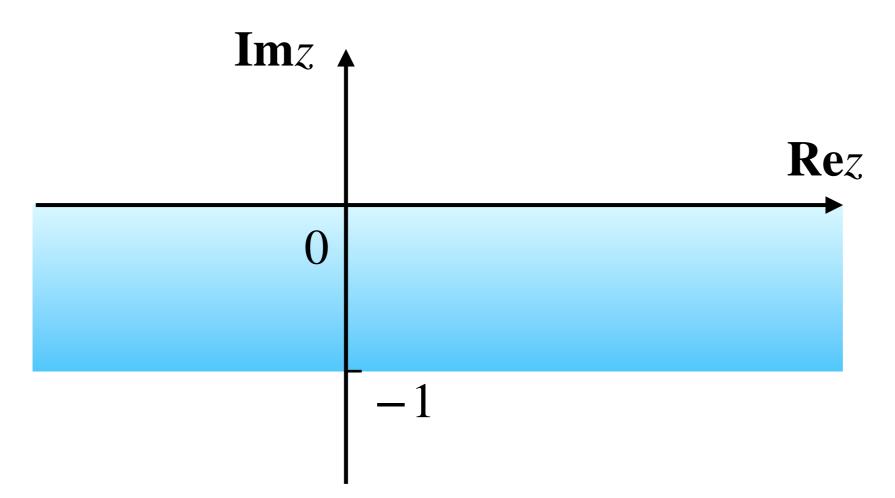
- The analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- For real z, it is certainly well-defined
- For $z = s ir \ (s, r \in \mathbb{R})$,

 $F(z) = \langle \Psi \,|\, \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} \,|\, \Psi \rangle = \langle \mathbf{b}^{\dagger} \Psi \,|\, \Delta_{\Psi}^{is} \Delta_{\Psi}^{r} \,|\, \mathbf{a} \Psi \rangle$

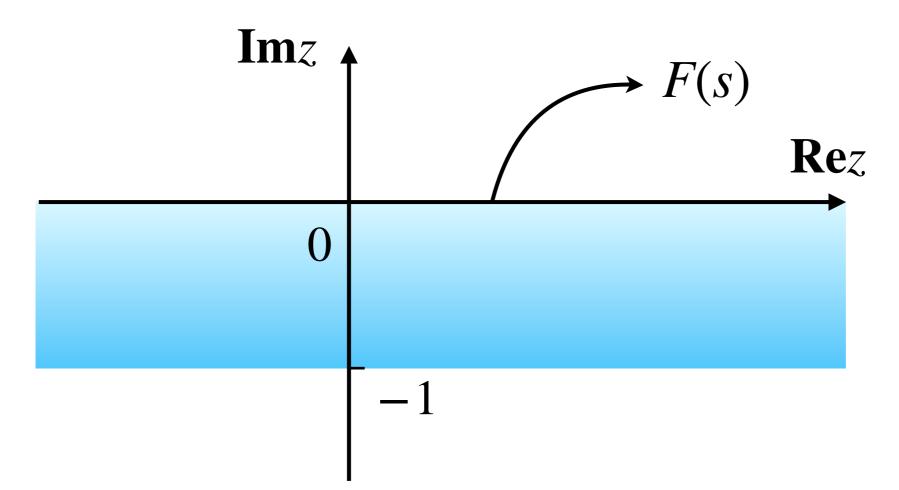
- The analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- For real z, it is certainly well-defined
- For $z = s ir \ (s, r \in \mathbb{R})$,

$$F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle = \langle \mathbf{b}^{\dagger} \Psi | \Delta_{\Psi}^{is} \Delta_{\Psi}^{r} | \mathbf{a} \Psi \rangle$$
$$= \langle \Delta_{\Psi}^{r/2} \mathbf{b}^{\dagger} \Psi | \Delta_{\Psi}^{is} | \Delta_{\Psi}^{r/2} \mathbf{a} \Psi \rangle$$

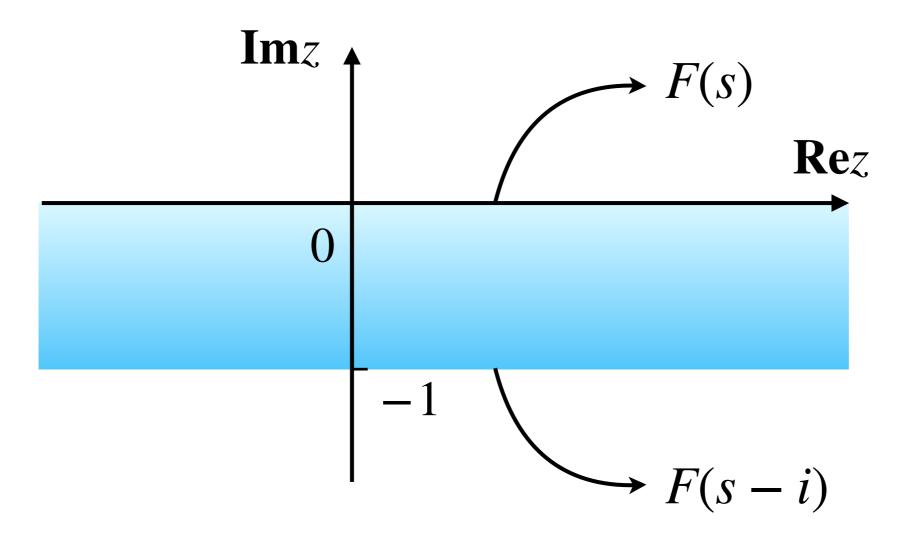
- The analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- F(z) is continuous in the strip $0 \ge Imz \ge -1$ and holomorphic in the interior of the strip.



- The analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- F(z) is continuous in the strip $0 \ge Imz \ge -1$ and holomorphic in the interior of the strip.



- The analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- F(z) is continuous in the strip $0 \ge Imz \ge -1$ and holomorphic in the interior of the strip.



- The analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- F(z) is continuous in the strip $0 \ge Imz \ge -1$ and holomorphic in the interior of the strip.
- On the upper boundary, $F(s) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{is} \mathbf{a} | \Psi \rangle$

- The analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- F(z) is continuous in the strip $0 \ge Imz \ge -1$ and holomorphic in the interior of the strip.
- On the upper boundary, $F(s) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{is} \mathbf{a} | \Psi \rangle$
- On the lower boundary,

- The analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- F(z) is continuous in the strip $0 \ge Imz \ge -1$ and holomorphic in the interior of the strip.
- On the upper boundary, $F(s) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{is} \mathbf{a} | \Psi \rangle$
- On the lower boundary,

$$F(s-i) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{is+1} \mathbf{a} | \Psi \rangle = \langle \Delta_{\Psi}^{1/2} \mathbf{b}^{\dagger} \Psi | \Delta_{\Psi}^{is} | \Delta_{\Psi}^{1/2} \mathbf{a} \Psi \rangle$$

- The analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- F(z) is continuous in the strip $0 \ge Im_z \ge -1$ and holomorphic in the interior of the strip.
- On the upper boundary, $F(s) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{is} \mathbf{a} | \Psi \rangle$
- On the lower boundary,

$$F(s-i) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{is+1} \mathbf{a} | \Psi \rangle = \langle \Delta_{\Psi}^{1/2} \mathbf{b}^{\dagger} \Psi | \Delta_{\Psi}^{is} | \Delta_{\Psi}^{1/2} \mathbf{a} \Psi \rangle$$
$$= \langle J_{\Psi} S_{\Psi} \mathbf{b}^{\dagger} \Psi | \Delta_{\Psi}^{is} | J_{\Psi} S_{\Psi} \mathbf{a} \Psi \rangle = \langle J_{\Psi} \mathbf{b} \Psi | \Delta_{\Psi}^{is} | J_{\Psi} \mathbf{a}^{\dagger} \Psi \rangle$$

- The analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- F(z) is continuous in the strip $0 \ge Im_z \ge -1$ and holomorphic in the interior of the strip.
- On the upper boundary, $F(s) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{is} \mathbf{a} | \Psi \rangle$
- On the lower boundary,

$$F(s - i) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{is+1} \mathbf{a} | \Psi \rangle = \langle \Delta_{\Psi}^{1/2} \mathbf{b}^{\dagger} \Psi | \Delta_{\Psi}^{is} | \Delta_{\Psi}^{1/2} \mathbf{a} \Psi \rangle$$
$$= \langle J_{\Psi} S_{\Psi} \mathbf{b}^{\dagger} \Psi | \Delta_{\Psi}^{is} | J_{\Psi} S_{\Psi} \mathbf{a} \Psi \rangle = \langle J_{\Psi} \mathbf{b} \Psi | \Delta_{\Psi}^{is} | J_{\Psi} \mathbf{a}^{\dagger} \Psi \rangle$$
$$= \langle J_{\Psi} \mathbf{b} \Psi | J_{\Psi} \Delta_{\Psi}^{is} \mathbf{a}^{\dagger} \Psi \rangle = \langle \Delta_{\Psi}^{is} \mathbf{a}^{\dagger} \Psi | \mathbf{b} \Psi \rangle$$

- The analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- F(z) is continuous in the strip $0 \ge Im_z \ge -1$ and holomorphic in the interior of the strip.
- On the upper boundary, $F(s) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{is} \mathbf{a} | \Psi \rangle$
- On the lower boundary,

$$F(s - i) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{is+1} \mathbf{a} | \Psi \rangle = \langle \Delta_{\Psi}^{1/2} \mathbf{b}^{\dagger} \Psi | \Delta_{\Psi}^{is} | \Delta_{\Psi}^{1/2} \mathbf{a} \Psi \rangle$$

$$= \langle J_{\Psi} S_{\Psi} \mathbf{b}^{\dagger} \Psi | \Delta_{\Psi}^{is} | J_{\Psi} S_{\Psi} \mathbf{a} \Psi \rangle = \langle J_{\Psi} \mathbf{b} \Psi | \Delta_{\Psi}^{is} | J_{\Psi} \mathbf{a}^{\dagger} \Psi \rangle$$

$$= \langle J_{\Psi} \mathbf{b} \Psi | J_{\Psi} \Delta_{\Psi}^{is} \mathbf{a}^{\dagger} \Psi \rangle = \langle \Delta_{\Psi}^{is} \mathbf{a}^{\dagger} \Psi | \mathbf{b} \Psi \rangle$$

$$= \langle \Psi | \mathbf{a} \Delta_{\Psi}^{-is} \mathbf{b} | \Psi \rangle$$

II. The modular automorphism group

- The meaning of the analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- Consider the bipartite system again, the density matrix of the subsystem 1 is
 ^ˆ
 ₁ = Tr₂
 ^ˆ
 ₁₂ = Tr₂(|Ψ⟩⟨Ψ|), the expected value of any observable a ∈ 𝔄₁ can be written as Tr₁(
 ^ˆ
 ₁a).
- By quantum statistic physics, we know that the density matrix $\hat{\rho}$ of a balance system with Hamiltonian \hat{H} and temperature $T = 1/\beta$ should be

$$\hat{\rho} = Z^{-1} \exp(-\beta \hat{H})$$

• So one can define a "modular Hamiltonian" \hat{H} by $\hat{\rho}_1 = \exp(-\hat{H})$.

- The meaning of the analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- So one can define a "modular Hamiltonian" \hat{H} by $\hat{\rho}_1 = \exp(-\hat{H}),$ then

II. The modular automorphism group

- The meaning of the analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- So one can define a "modular Hamiltonian" \hat{H} by $\hat{\rho}_1 = \exp(-\hat{H}),$ then

 $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} \Delta_{\Psi}^{-iz} | \Psi \rangle = \langle \Psi | \mathbf{b} \hat{\rho}_{1}^{iz} \mathbf{a} \hat{\rho}_{1}^{-iz} | \Psi \rangle$

- The meaning of the analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- So one can define a "modular Hamiltonian" \hat{H} by $\hat{\rho}_1 = \exp(-\hat{H}),$ then

$$F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} \Delta_{\Psi}^{-iz} | \Psi \rangle = \langle \Psi | \mathbf{b} \hat{\rho}_{1}^{iz} \mathbf{a} \hat{\rho}_{1}^{-iz} | \Psi \rangle$$
$$= \langle \Psi | \mathbf{b} e^{-iz\hat{H}} \mathbf{a} e^{iz\hat{H}} | \Psi \rangle = \mathbf{Tr}_{1} \left[\mathbf{Tr}_{2} \left(\hat{\rho}_{12} \mathbf{b} e^{-iz\hat{H}} \mathbf{a} e^{iz\hat{H}} \right) \right]$$

- The meaning of the analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- So one can define a "modular Hamiltonian" \hat{H} by $\hat{\rho}_1 = \exp(-\hat{H}),$ then

$$F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} \Delta_{\Psi}^{-iz} | \Psi \rangle = \langle \Psi | \mathbf{b} \hat{\rho}_{1}^{iz} \mathbf{a} \hat{\rho}_{1}^{-iz} | \Psi \rangle$$
$$= \langle \Psi | \mathbf{b} e^{-iz\hat{H}} \mathbf{a} e^{iz\hat{H}} | \Psi \rangle = \mathbf{Tr}_{1} \left[\mathbf{Tr}_{2} \left(\hat{\rho}_{12} \mathbf{b} e^{-iz\hat{H}} \mathbf{a} e^{iz\hat{H}} \right) \right]$$
$$= \mathbf{Tr}_{1} \left(\hat{\rho}_{1} \mathbf{b} e^{-iz\hat{H}} \mathbf{a} e^{iz\hat{H}} \right) = \mathbf{Tr}_{1} \left(e^{-\hat{H}} \mathbf{b} e^{-iz\hat{H}} \mathbf{a} e^{iz\hat{H}} \right)$$

II. The modular automorphism group

- The meaning of the analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$
- So one can define a "modular Hamiltonian" \hat{H} by $\hat{\rho}_1 = \exp(-\hat{H})$, then

$$F(s) = \mathbf{Tr}_1 \left[e^{-\hat{H}} \mathbf{b} \left(e^{-is\hat{H}} \mathbf{a} e^{is\hat{H}} \right) \right] = \mathbf{Tr}_1 \left[e^{-\hat{H}} \mathbf{b} \mathbf{a}(-s) \right]$$
$$F(s-i) = \mathbf{Tr}_1 \left[e^{-\hat{H}} \left(e^{-is\hat{H}} \mathbf{a} e^{is\hat{H}} \right) \mathbf{b} \right] = \mathbf{Tr}_1 \left[e^{-\hat{H}} \mathbf{a}(-s) \mathbf{b} \right]$$

• Because $\mathbf{a}(s) = e^{is\hat{H}}\mathbf{a}e^{-is\hat{H}}$ is a Heisenberg operator at time *s*, these functions are real time two-point functions in a thermal ensemble with Hamiltonian \hat{H} (with inverse temperature 1) with different operator orderings.

II. The modular automorphism group

• The meaning of the analytic properties of $F(z) = \langle \Psi | \mathbf{b} \Delta_{\Psi}^{iz} \mathbf{a} | \Psi \rangle$

$$F(z) = \mathbf{Tr}_1\left(e^{-\hat{H}}\mathbf{b}e^{-iz\hat{H}}\mathbf{a}e^{iz\hat{H}}\right) = \mathbf{Tr}_1\left(e^{-(1-iz)\hat{H}}\mathbf{b}e^{-iz\hat{H}}\mathbf{a}\right)$$

- For infinite-dimensional system \mathscr{H} which can be factorized as $\mathscr{H} = \mathscr{H}_1 \otimes \mathscr{H}_2$, because the modular Hamiltonian \hat{H} is inevitably unbounded, the trace is well-defined iff both iz and 1 iz have non-negative real part, which means $0 \ge \operatorname{Im}_z \ge -1$.
- This is in consistent with our result (without assuming the factorization of the Hilbert space).

II. The modular automorphism group

• Multi-point correlation functions, for example

$$F(z_1, z_2) = \mathbf{Tr}_1\left(e^{-\hat{H}}\mathbf{c}e^{-iz_1\hat{H}}\mathbf{b}e^{-i(z_2-z_1)\hat{H}}\mathbf{a}e^{iz_2\hat{H}}\right)$$

• The domain of holomorphy should be

II. The modular automorphism group

• Multi-point correlation functions, for example

$$F(z_1, z_2) = \mathbf{Tr}_1\left(e^{-\hat{H}}\mathbf{c}e^{-iz_1\hat{H}}\mathbf{b}e^{-i(z_2-z_1)\hat{H}}\mathbf{a}e^{iz_2\hat{H}}\right)$$

• The domain of holomorphy should be

 $Imz_1 < 0, Im(z_2 - z_1) < 0,$

II. The modular automorphism group

• Multi-point correlation functions, for example

$$F(z_1, z_2) = \mathbf{Tr}_1\left(e^{-\hat{H}}\mathbf{c}e^{-iz_1\hat{H}}\mathbf{b}e^{-i(z_2-z_1)\hat{H}}\mathbf{a}e^{iz_2\hat{H}}\right)$$

• The domain of holomorphy should be

 $\mathbf{Im}z_1 < 0, \ \mathbf{Im}(z_2 - z_1) < 0,$

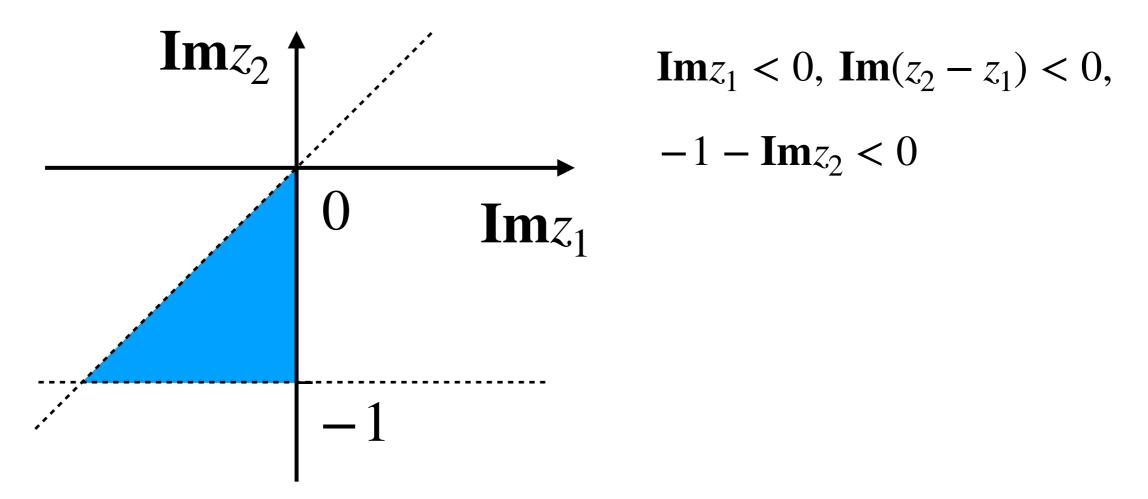
$$-1 - \mathbf{Im} z_2 < 0$$

II. The modular automorphism group

• Multi-point correlation functions, for example

$$F(z_1, z_2) = \mathbf{Tr}_1\left(e^{-\hat{H}}\mathbf{c}e^{-iz_1\hat{H}}\mathbf{b}e^{-i(z_2-z_1)\hat{H}}\mathbf{a}e^{iz_2\hat{H}}\right)$$

The domain of holomorphy should be



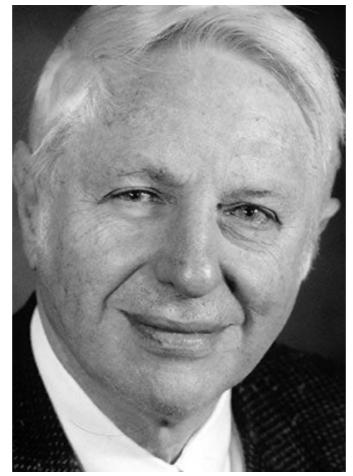
II. The modular automorphism group

• All statements about holomorphy still apply if Δ_{Ψ} is replaced by the relative modular operator $\Delta_{\Psi|\Phi}$.

II. The modular automorphism group

- The KMS condition and KMS state ω (Kubo 1957, Martin and Schwinger 1959)

Ryogo Kubo 久保 亮五 (1920/02/15-1995/03/31)



Paul Cecil Martin (1931/01/31-2016/06/19)

Julian Seymour Schwinger (1918/02/12-1994/07/16)

II. The modular automorphism group

- The KMS condition and KMS state ω (Kubo 1957, Martin and Schwinger 1959)

$$\mathbf{Tr}\left[e^{-\beta\hat{H}}\left(e^{it\hat{H}}\mathbf{A}e^{-it\hat{H}}\right)\mathbf{B}\right] = \mathbf{Tr}\left[e^{-\beta\hat{H}}\mathbf{B}\left(e^{i(t+i\beta)\hat{H}}\mathbf{A}e^{-i(t+i\beta)\hat{H}}\right)\right]$$

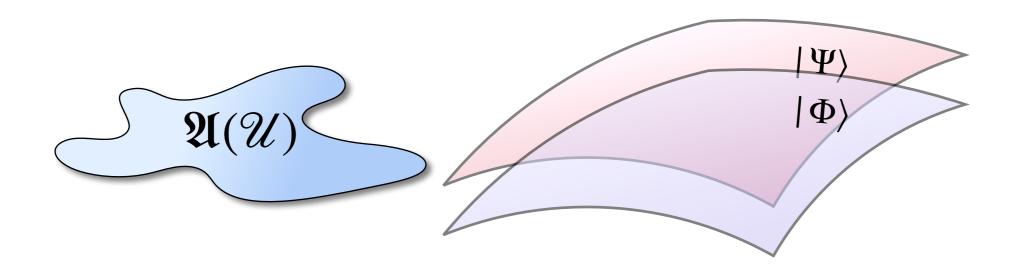
• The Tomita-Takesaki theory gives a Gibbs state which satisfies the KMS condition.

III. Monotonicity of relative entropy in the finite-dimensional case

- Araki's definition of relative entropy: a spacetime region ${\mathscr U}$ and two states Ψ, Φ

$$\mathcal{S}_{\Psi|\Phi;\mathcal{U}} = -\langle \Psi | \log \Delta_{\Psi|\Phi;\mathcal{U}} | \Psi \rangle$$

• How does it go back to the usual definition of the relative entropy of a finite degrees of freedom system?



- In nonrelativistic quantum mechanics, there is not spacetime region, but still commuting algebras \mathfrak{A} and \mathfrak{A}' .
- Let Ψ be a cyclic separating vector for both \mathfrak{A} and \mathfrak{A}' , and Φ be a second state vector. (The bipartite system again)

- In nonrelativistic quantum mechanics, there is not spacetime region, but still commuting algebras \mathfrak{A} and \mathfrak{A}' .
- Let Ψ be a cyclic separating vector for both \mathfrak{A} and \mathfrak{A}' , and Φ be a second state vector. (The bipartite system again)

$$\mathcal{S}_{\Psi|\Phi} = -\langle \Psi | \log \Delta_{\Psi|\Phi} | \Psi \rangle = -\operatorname{Tr}\left(|\Psi\rangle\langle \Psi | \log \Delta_{\Psi|\Phi} \right)$$

- In nonrelativistic quantum mechanics, there is not spacetime region, but still commuting algebras \mathfrak{A} and \mathfrak{A}' .
- Let Ψ be a cyclic separating vector for both \mathfrak{A} and \mathfrak{A}' , and Φ be a second state vector. (The bipartite system again)

$$\mathcal{S}_{\Psi|\Phi} = -\langle \Psi | \log \Delta_{\Psi|\Phi} | \Psi \rangle = -\mathbf{Tr} \left(|\Psi\rangle \langle \Psi | \log \Delta_{\Psi|\Phi} \right)$$
$$= -\mathbf{Tr}_{12} \left(\rho_{12} \log \Delta_{\Psi|\Phi} \right) = -\mathbf{Tr}_{12} \left[\rho_{12} \log \left(\sigma_1 \otimes \rho_2^{-1} \right) \right]$$

- How to calculate $\log (\sigma_1 \otimes \rho_2^{-1})$?
- To calculate the logarithm of a tensor product $\log (A \otimes B)$, we use singular value decomposition $A = U_A^{\dagger} \operatorname{diag}\{a_1, \dots, a_n\}V_A$ and $B = U_B^{\dagger} \operatorname{diag}\{b_1, \dots, b_n\}V_B$, then $\log (A \otimes B) = \log \left(U_A^{\dagger} \operatorname{diag}\{a_1, \dots, a_n\}V_A \otimes U_B^{\dagger} \operatorname{diag}\{b_1, \dots, b_n\}V_B\right)$
- Under this base, the tensor product matrix is diagonalized to be $A \otimes B = \operatorname{diag}\{a_1b_1, a_2b_1, \dots, a_nb_1, a_1b_2, \dots, a_nb_2, \dots, \dots, a_1b_n, \dots, a_nb_n\}.$

III. Monotonicity of relative entropy in the finite-dimensional case

So under this (Schmidt) base, the logarithm of the tensor product is

III. Monotonicity of relative entropy in the finite-dimensional case

So under this (Schmidt) base, the logarithm of the tensor product is

 $\log (A \otimes B) = \operatorname{diag} \{ \log a_1 + \log b_1, \log a_2 + \log b_1, \cdots, \log a_n + \log b_1, \log a_1 + \log b_2, \cdots,$

 $\log a_n + \log b_2, \cdots, \cdots, \log a_1 + \log b_n, \cdots, \log a_n + \log b_n \}$

III. Monotonicity of relative entropy in the finite-dimensional case

So under this (Schmidt) base, the logarithm of the tensor product is

 $\log (A \otimes B) = \operatorname{diag} \{ \log a_1 + \log b_1, \log a_2 + \log b_1, \dots, \log a_n + \log b_1, \log a_1 + \log b_2, \dots, \log a_n + \log b_n, \dots, \log a_n + \log b_n, \dots, \log a_n + \log b_n \}$

 $= \operatorname{diag}\{\log a_1, \log a_2, \log a_1, \log a_2, \dots, \log a_n, \dots, \log a_n, \dots, \log a_1, \log a_2, \dots, \log a_n\}$ $+ \operatorname{diag}\{\log b_1, \dots, \log b_1, \log b_2, \dots, \log b_2, \dots, \log b_n, \dots, \log b_n\}$

III. Monotonicity of relative entropy in the finite-dimensional case

So under this (Schmidt) base, the logarithm of the tensor product is

 $\log (A \otimes B) = \operatorname{diag} \{ \log a_1 + \log b_1, \log a_2 + \log b_1, \cdots, \log a_n + \log b_1, \log a_1 + \log b_2, \cdots, \log a_n + \log b_n, \cdots, \log a_n + \log b_n, \cdots, \log a_n + \log b_n \}$

 $= \operatorname{diag}\{\log a_1, \log a_2, \log a_1, \log a_2, \cdots, \log a_n, \cdots, \log a_n, \cdots, \log a_1, \log a_2, \cdots, \log a_n\}$ $+ \operatorname{diag}\{\log b_1, \cdots, \log b_1, \log b_2, \cdots, \log b_2, \cdots, \log b_n, \cdots, \log b_n\}$

 $= \log A \otimes \mathbf{1} + \mathbf{1} \otimes \log B$

- In nonrelativistic quantum mechanics, there is not spacetime region, but still commuting algebras \mathfrak{A} and \mathfrak{A}' .
- Let Ψ be a cyclic separating vector for both \mathfrak{A} and \mathfrak{A}' , and Φ be a second state vector. (The bipartite system again)

$$\mathcal{S}_{\Psi|\Phi} = -\mathbf{T}\mathbf{r}_{12} \left[\rho_{12} \log \left(\sigma_1 \otimes \rho_2^{-1} \right) \right]$$

- In nonrelativistic quantum mechanics, there is not spacetime region, but still commuting algebras \mathfrak{A} and \mathfrak{A}' .
- Let Ψ be a cyclic separating vector for both \mathfrak{A} and \mathfrak{A}' , and Φ be a second state vector. (The bipartite system again)

$$S_{\Psi|\Phi} = -\mathbf{T}\mathbf{r}_{12} \left[\rho_{12} \log \left(\sigma_1 \otimes \rho_2^{-1} \right) \right]$$
$$= -\mathbf{T}\mathbf{r}_{12} \left[\rho_{12} \log \left(\sigma_1 \otimes \mathbf{1} \right) \right] + \mathbf{T}\mathbf{r}_{12} \left[\rho_{12} \log \left(\mathbf{1} \otimes \rho_2 \right) \right]$$

- In nonrelativistic quantum mechanics, there is not spacetime region, but still commuting algebras \mathfrak{A} and \mathfrak{A}' .
- Let Ψ be a cyclic separating vector for both \mathfrak{A} and \mathfrak{A}' , and Φ be a second state vector. (The bipartite system again)

$$\mathcal{S}_{\Psi|\Phi} = -\mathbf{T}\mathbf{r}_{12} \left[\rho_{12} \log \left(\sigma_1 \otimes \rho_2^{-1} \right) \right]$$

= $-\mathbf{T}\mathbf{r}_{12} \left[\rho_{12} \log \left(\sigma_1 \otimes \mathbf{1} \right) \right] + \mathbf{T}\mathbf{r}_{12} \left[\rho_{12} \log \left(\mathbf{1} \otimes \rho_2 \right) \right]$
= $-\mathbf{T}\mathbf{r}_1 \left(\rho_1 \log \sigma_1 \right) + \mathbf{T}\mathbf{r}_2 \left(\rho_2 \log \rho_2 \right)$

- In nonrelativistic quantum mechanics, there is not spacetime region, but still commuting algebras \mathfrak{A} and \mathfrak{A}' .
- Let Ψ be a cyclic separating vector for both \mathfrak{A} and \mathfrak{A}' , and Φ be a second state vector. (The bipartite system again)

$$\mathcal{S}_{\Psi|\Phi} = -\mathbf{T}\mathbf{r}_{12} \left[\rho_{12} \log \left(\sigma_1 \otimes \rho_2^{-1}\right) \right]$$

= $-\mathbf{T}\mathbf{r}_{12} \left[\rho_{12} \log \left(\sigma_1 \otimes \mathbf{1}\right) \right] + \mathbf{T}\mathbf{r}_{12} \left[\rho_{12} \log \left(\mathbf{1} \otimes \rho_2\right) \right]$
= $-\mathbf{T}\mathbf{r}_1 \left(\rho_1 \log \sigma_1 \right) + \mathbf{T}\mathbf{r}_2 \left(\rho_2 \log \rho_2 \right)$
= $-\mathbf{T}\mathbf{r}_1 \left(\rho_1 \log \sigma_1 \right) + \mathbf{T}\mathbf{r}_1 \left(\rho_1 \log \rho_1 \right)$

- In nonrelativistic quantum mechanics, there is not spacetime region, but still commuting algebras \mathfrak{A} and \mathfrak{A}' .
- Let Ψ be a cyclic separating vector for both \mathfrak{A} and \mathfrak{A}' , and Φ be a second state vector. (The bipartite system again)

$$\begin{split} \mathcal{S}_{\Psi|\Phi} &= -\mathbf{T}\mathbf{r}_{12} \left[\rho_{12} \log \left(\sigma_1 \otimes \rho_2^{-1} \right) \right] \\ &= -\mathbf{T}\mathbf{r}_{12} \left[\rho_{12} \log \left(\sigma_1 \otimes \mathbf{1} \right) \right] + \mathbf{T}\mathbf{r}_{12} \left[\rho_{12} \log \left(\mathbf{1} \otimes \rho_2 \right) \right] \\ &= -\mathbf{T}\mathbf{r}_1 \left(\rho_1 \log \sigma_1 \right) + \mathbf{T}\mathbf{r}_2 \left(\rho_2 \log \rho_2 \right) \\ &= -\mathbf{T}\mathbf{r}_1 \left(\rho_1 \log \sigma_1 \right) + \mathbf{T}\mathbf{r}_1 \left(\rho_1 \log \rho_1 \right) \\ &= \mathbf{T}\mathbf{r}\rho_1 \left(\log \rho_1 - \log \sigma_1 \right) \end{split}$$

III. Monotonicity of relative entropy in the finite-dimensional case

• In nonrelativistic quantum mechanics, the relative entropy between two states with density matrices ρ_1 and σ_1 in Hilbert space \mathcal{H}_1 is

$$\mathcal{S}(\rho_1 \| \sigma_1) = \mathbf{Tr} \rho_1 \left(\log \rho_1 - \log \sigma_1 \right)$$

III. Monotonicity of relative entropy in the finite-dimensional case

• In nonrelativistic quantum mechanics, the relative entropy between two states with density matrices ρ_1 and σ_1 in Hilbert space \mathcal{H}_1 is

$$\mathcal{S}(\rho_1 \| \sigma_1) = \mathbf{Tr} \rho_1 \left(\log \rho_1 - \log \sigma_1 \right)$$

• For these mixed states, one can always introduce another Hilbert space \mathscr{H}_2 to purify them in $\mathscr{H}_1 \otimes \mathscr{H}_2$, which means there are pure states Ψ and Φ whose reduced density matrices are just ρ_1 and σ_1 .

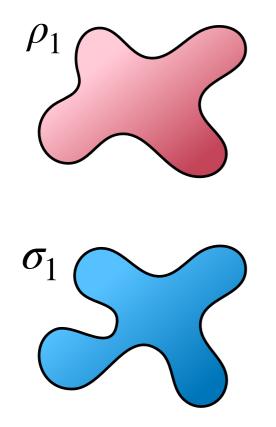
III. Monotonicity of relative entropy in the finite-dimensional case

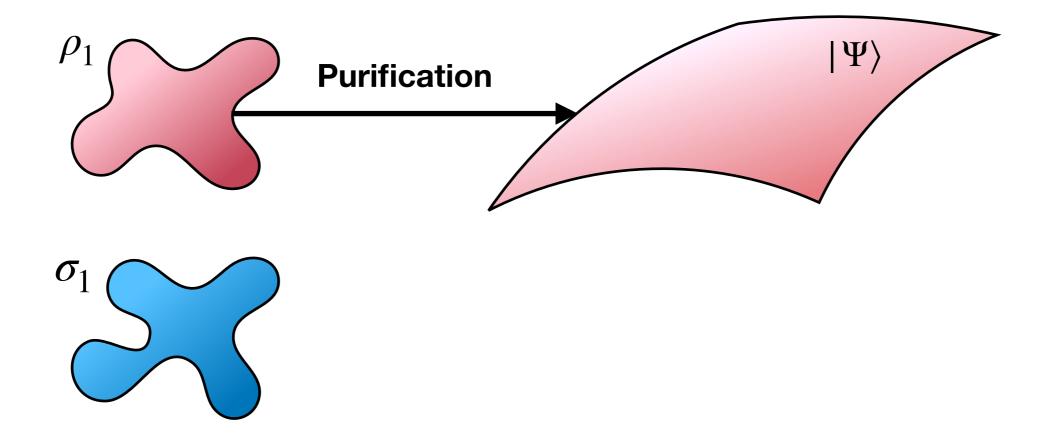
• In nonrelativistic quantum mechanics, the relative entropy between two states with density matrices ρ_1 and σ_1 in Hilbert space \mathscr{H}_1 is

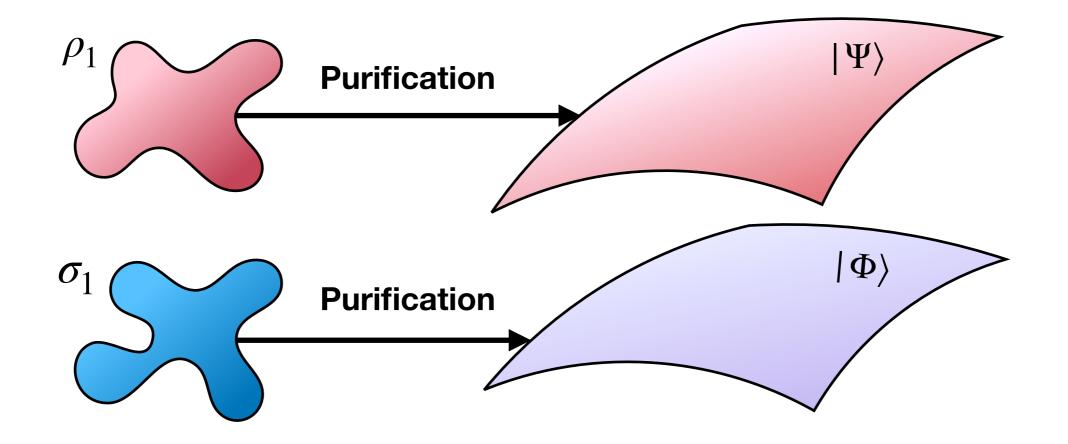
$$\mathcal{S}(\rho_1 \| \sigma_1) = \mathbf{Tr} \rho_1 \left(\log \rho_1 - \log \sigma_1 \right)$$

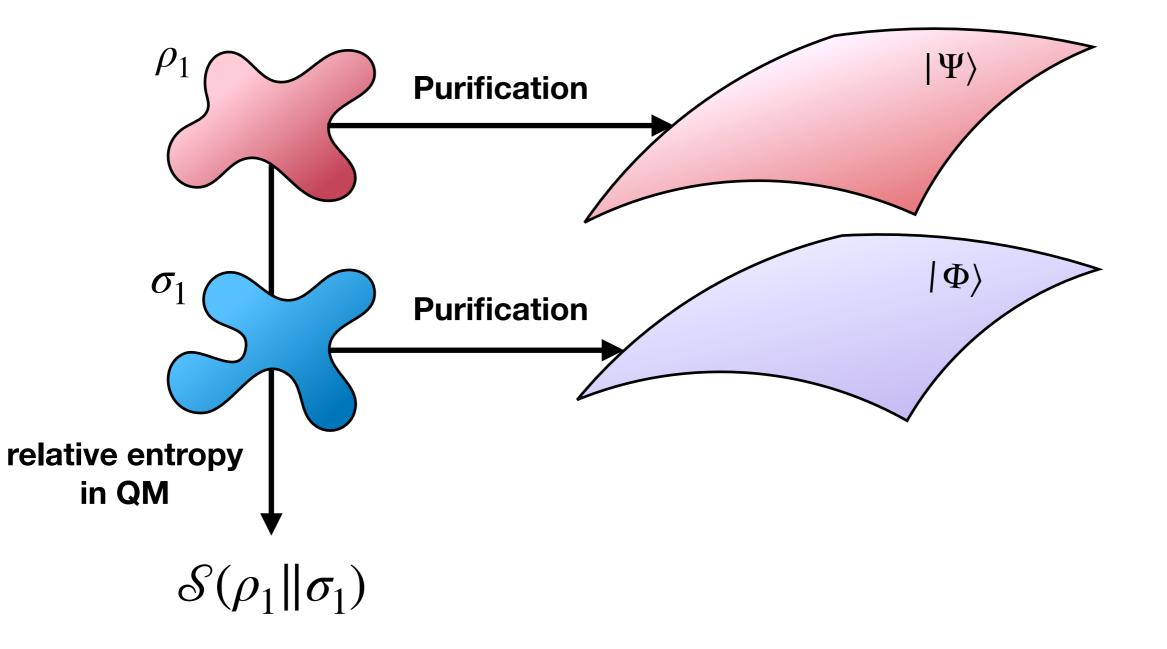
• For these mixed states, one can always introduce another Hilbert space \mathscr{H}_2 to purify them in $\mathscr{H}_1 \otimes \mathscr{H}_2$, which means there are pure states Ψ and Φ whose reduced density matrices are just ρ_1 and σ_1 .

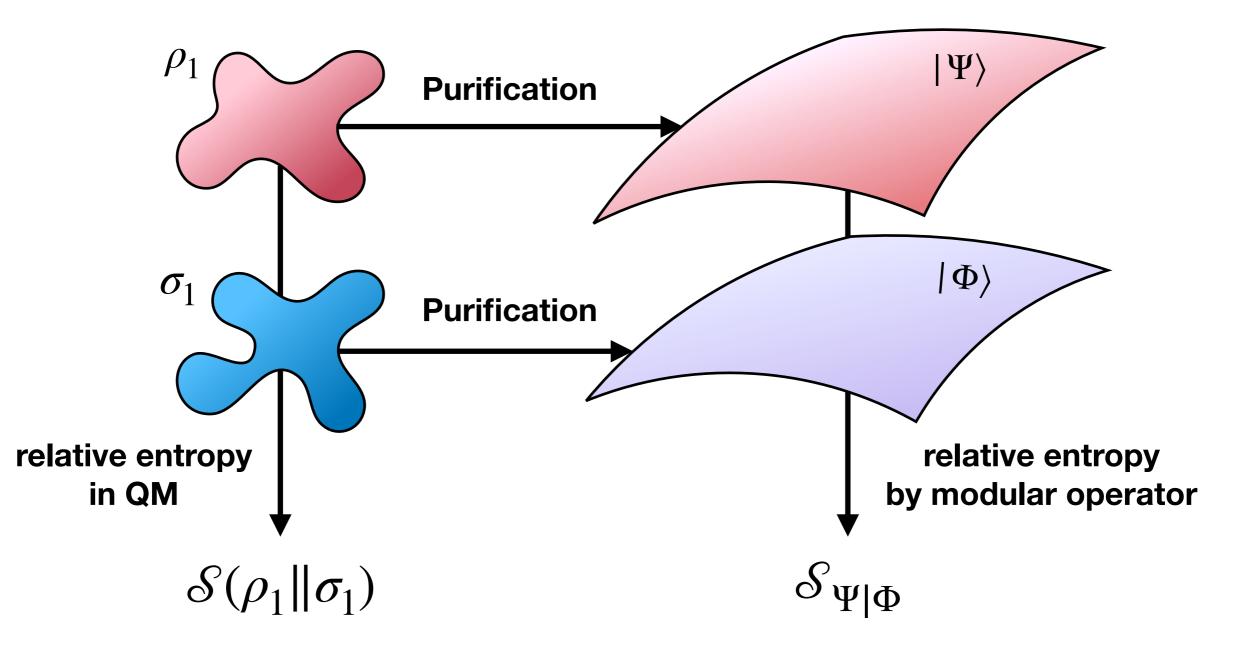
$$\mathcal{S}(\rho_1 \| \sigma_1) = \mathcal{S}_{\Psi \mid \Phi}$$

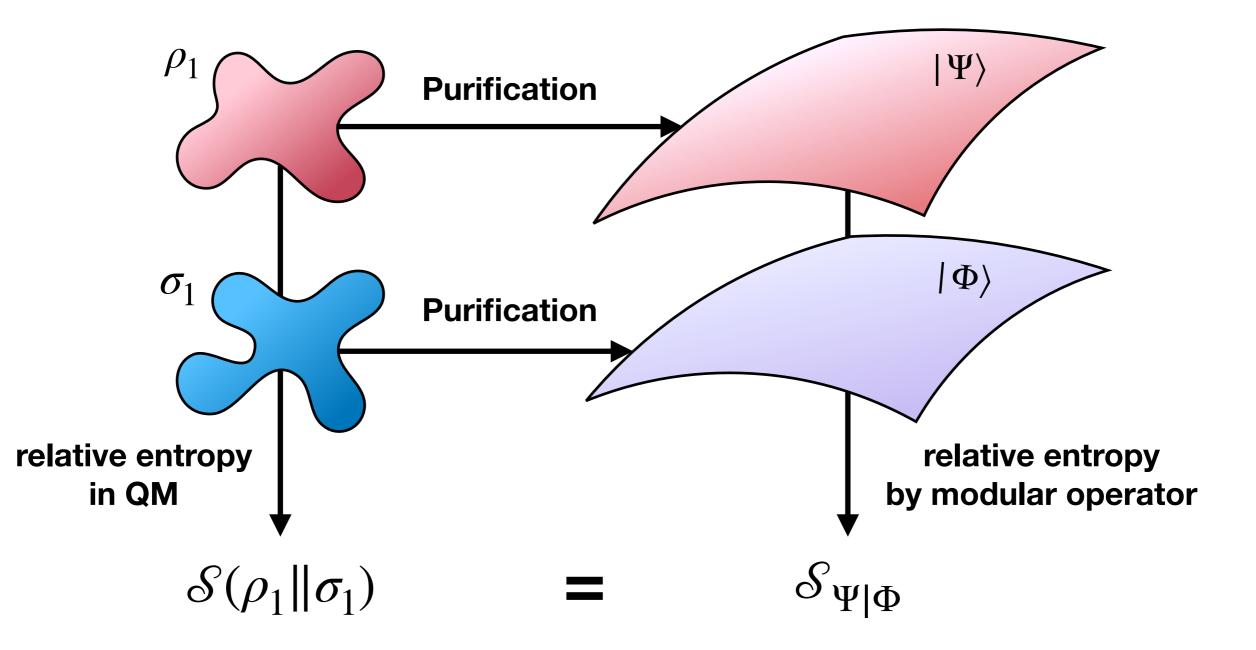












- The important generic properties of relative entropy holds certainly in the (simple) nonrelativistic quantum mechanics case
 - Positivity;
 - monotonicity (?)
- How to understand the monotonicity in the nonrelativistic quantum mechanics case? (There is no spacetime region.)

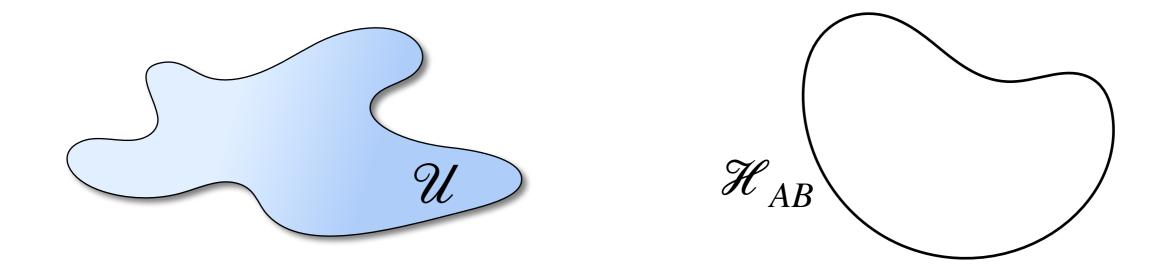
III. Monotonicity of relative entropy in the finite-dimensional case

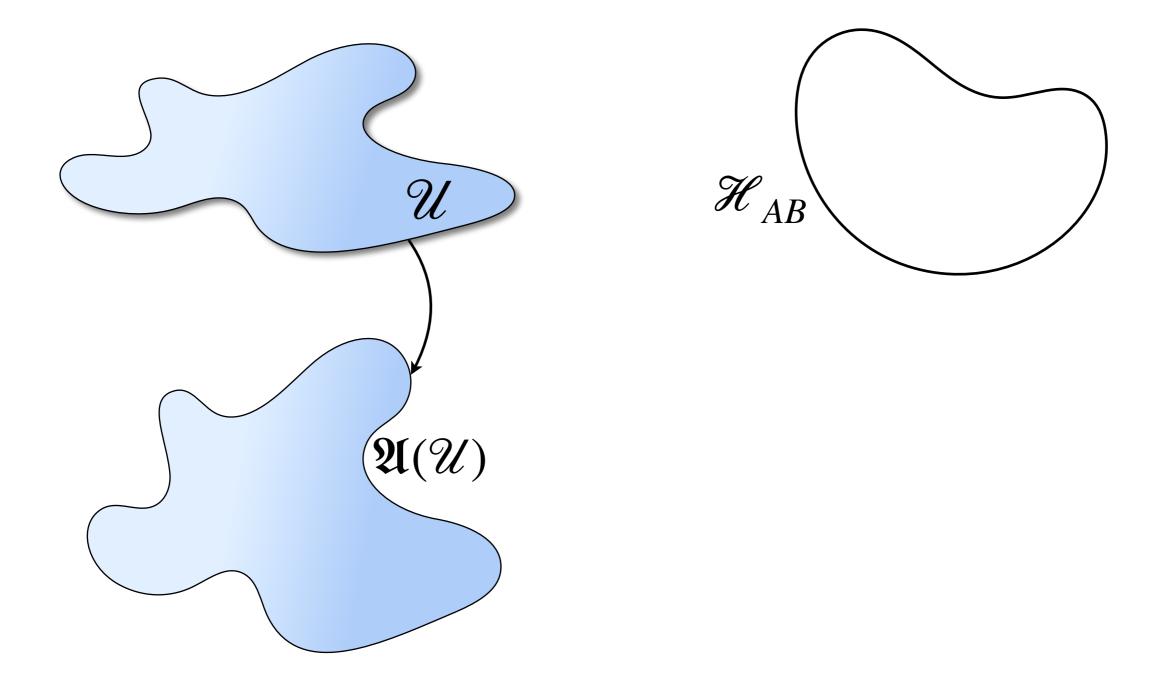
In nonrelativistic quantum mechanics, one consider the Hilbert space $\mathscr{H}_{AB} = \mathscr{H}_A \otimes \mathscr{H}_B$ \mathcal{H}_{AB} \mathcal{H}_{R}

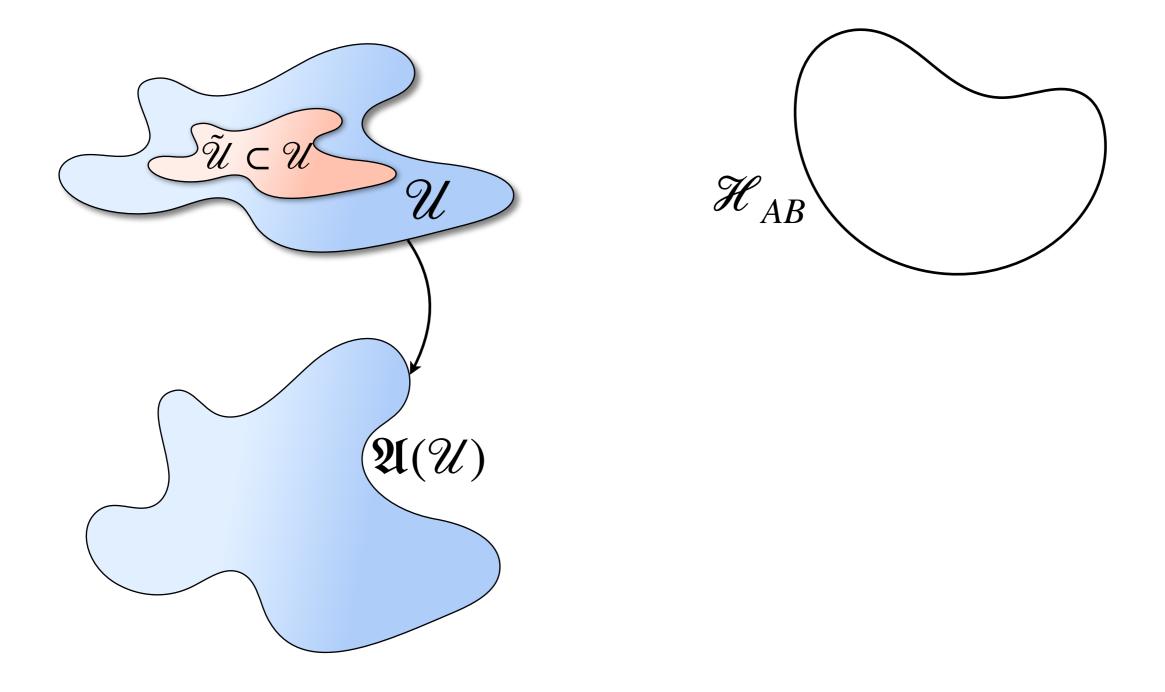
III. Monotonicity of relative entropy in the finite-dimensional case

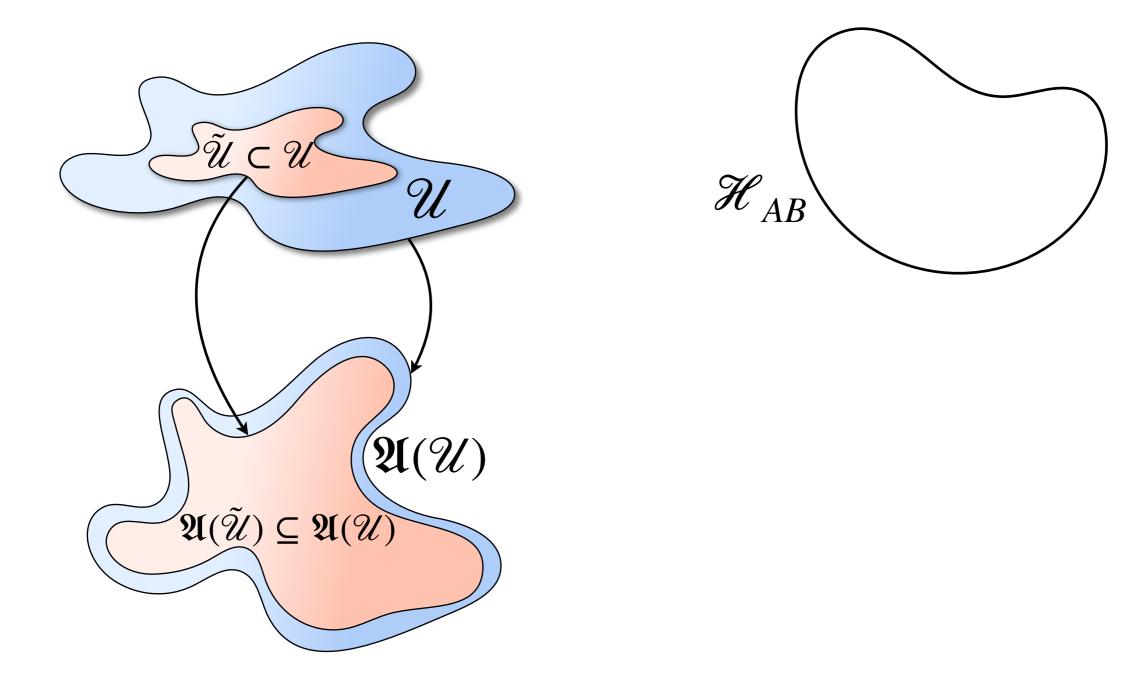
- In nonrelativistic quantum mechanics, one consider the Hilbert space $\mathscr{H}_{AB} = \mathscr{H}_A \otimes \mathscr{H}_B$
- Given density matrices ρ_{AB} and σ_{AB} on \mathcal{H}_{AB} , then one has reduced density matrices $\rho_A = \mathbf{Tr}_B \rho_{AB}$ and $\sigma_A = \mathbf{Tr}_B \sigma_{AB}$ on \mathcal{H}_A .
- The monotonicity of relative entropy is the relation between the relative entropies $\mathcal{S}(\rho_{AB} \| \sigma_{AB})$ and $\mathcal{S}(\rho_A \| \sigma_A)$,

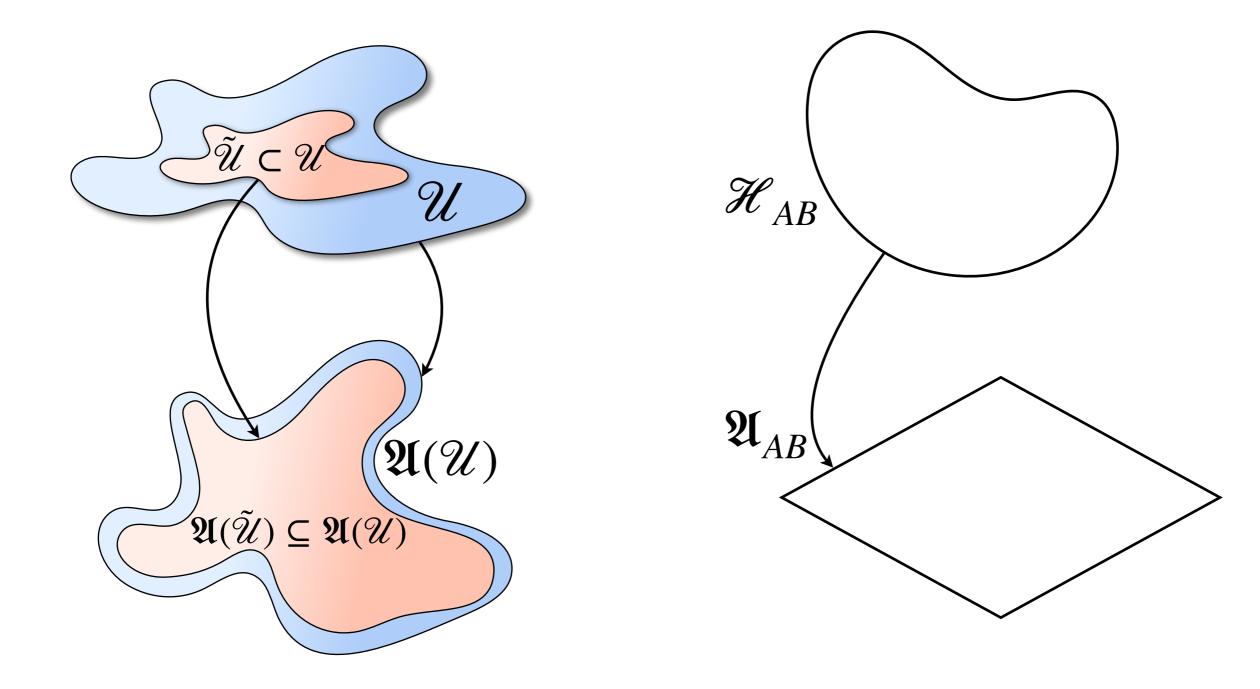
 $\mathcal{S}(\rho_{AB} \| \sigma_{\!AB}) \geqslant \mathcal{S}(\rho_A \| \sigma_{\!A})$

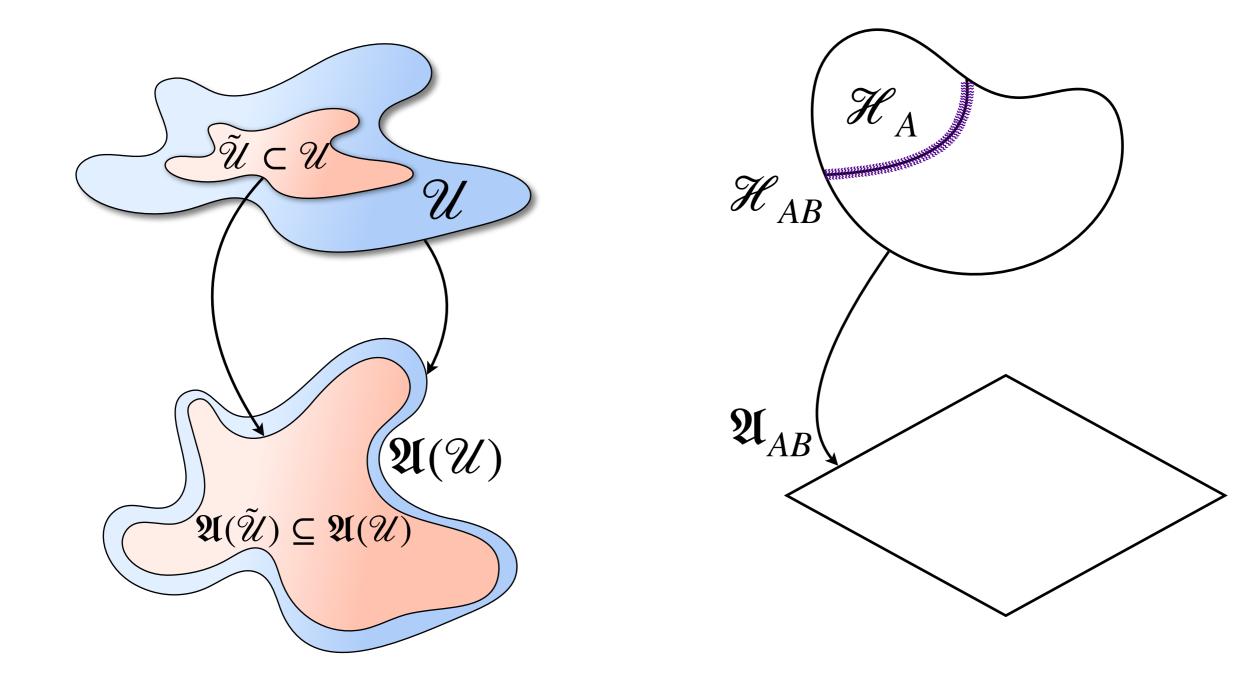


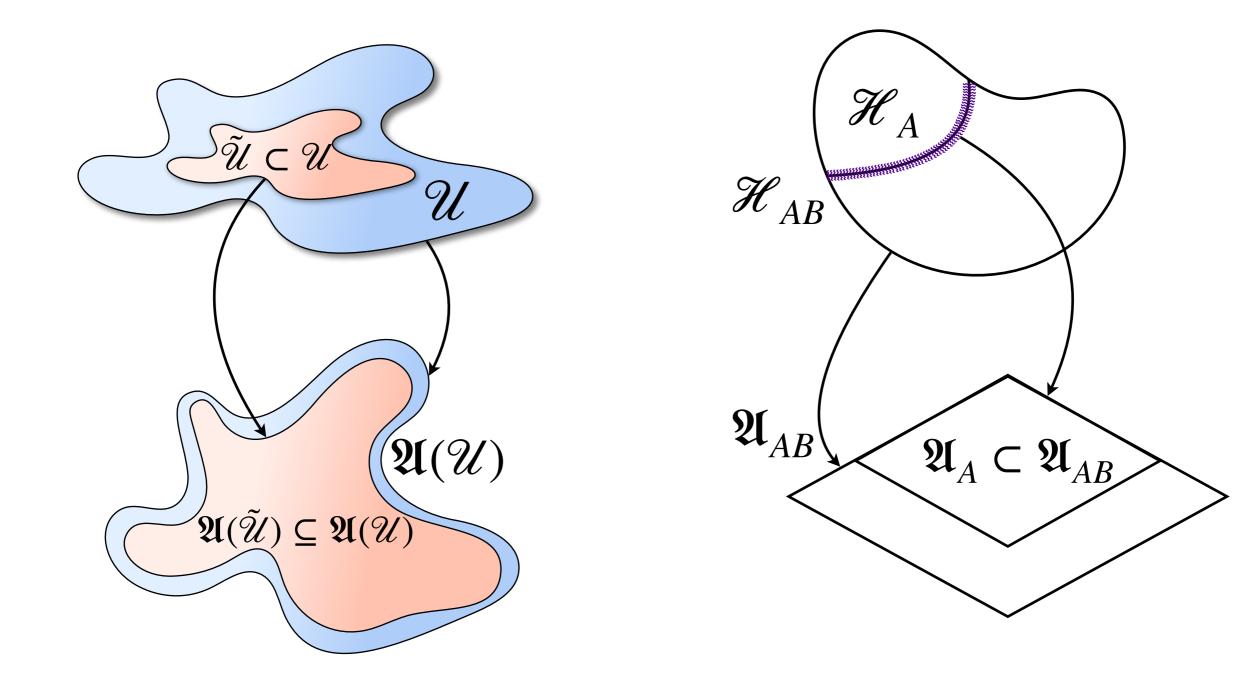


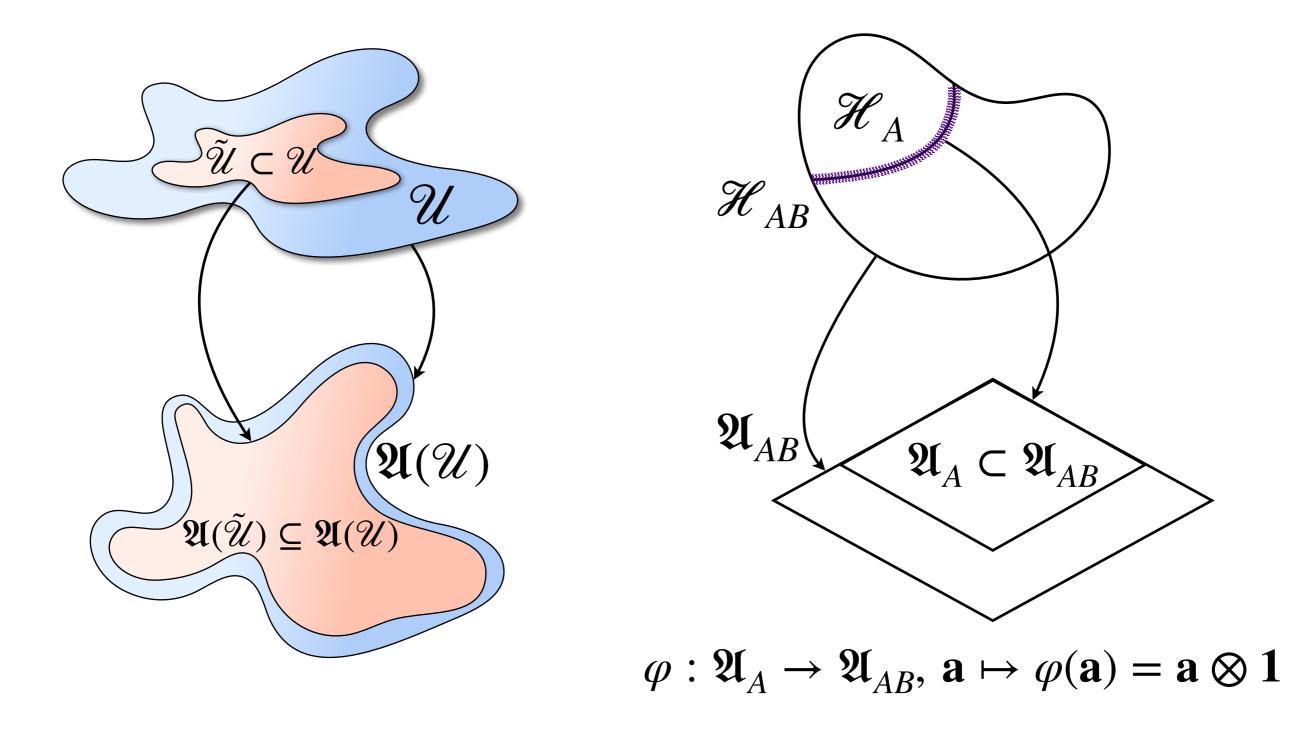




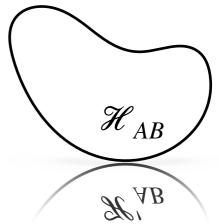








- To get pure state "vector", we purifies the density matrices in \mathscr{H}_{AB} with a doubled Hilbert space $\mathscr{H}_{AB} \otimes \mathscr{H}'_{AB}$
- There are pure states Ψ_{AB} , $\Phi_{AB} \in \mathscr{H}_{AB} \otimes \mathscr{H}'_{AB}$ associated to the density matrices ρ_{AB} and σ_{AB} , respectively.
- We assume that ρ_{AB} is non-degenerate (otherwise one can always work in a subspace of \mathscr{H}_{AB}), then the vector Ψ_{AB} is a cyclic separating vector.



- With same method, we purifies the density matrices in \mathscr{H}_A with a doubled Hilbert space $\mathscr{H}_A\otimes \mathscr{H}_A'$
- There are pure states $\Psi_A, \Phi_A \in \mathcal{H}_A \otimes \mathcal{H}'_A$ associated to the density matrices ρ_A and σ_A , respectively.
- The question is: for any operator **a** acts on $\mathscr{H}_A \otimes \mathscr{H}'_A$, how to map it to an operator acts on $\mathscr{H}_{AB} \otimes \mathscr{H}'_{AB}$ naturally with a suitable isometric embedding?

- With same method, we purifies the density matrices in \mathscr{H}_A with a doubled Hilbert space $\mathscr{H}_A\otimes \mathscr{H}_A'$
- There are pure states $\Psi_A, \Phi_A \in \mathcal{H}_A \otimes \mathcal{H}'_A$ associated to the density matrices ρ_A and σ_A , respectively.
- The question is: for any operator **a** acts on $\mathcal{H}_A \otimes \mathcal{H}'_A$, how to map it to an operator acts on $\mathcal{H}_{AB} \otimes \mathcal{H}'_{AB}$ naturally with a suitable isometric embedding?

$$U: \ \mathcal{H}_A \otimes \mathcal{H}'_A \to \mathcal{H}_{AB} \otimes \mathcal{H}'_{AB}$$

III. Monotonicity of relative entropy in the finite-dimensional case

• A natural way is keeping the factors in invariant:

III. Monotonicity of relative entropy in the finite-dimensional case

• A natural way is keeping the factors in invariant:

 $U(\mathbf{a}\Psi_A) = (\mathbf{a} \otimes \mathbf{1})\Psi_{AB}$

III. Monotonicity of relative entropy in the finite-dimensional case

• A natural way is keeping the factors in invariant:

 $U(\mathbf{a}\Psi_A) = (\mathbf{a} \otimes \mathbf{1})\Psi_{AB}$

- Because Ψ_A is cyclic, U is a linear transformation defined on the whole $\mathscr{H}_A \otimes \mathscr{H}'_A$;
- Because Ψ_A is separating, U(0) = 0;
- Because Ψ_{AB} is separating, U is an embedding.

III. Monotonicity of relative entropy in the finite-dimensional case

III. Monotonicity of relative entropy in the finite-dimensional case

• U is an isometric embedding

 $\left\langle U\eta \,|\, U\chi \right\rangle = \left\langle U(\mathbf{a}_{\eta} \Psi_{A}) \,|\, U(\mathbf{a}_{\chi} \Psi_{A}) \right\rangle = \left\langle (\mathbf{a}_{\eta} \otimes \mathbf{1}) \Psi_{AB} \,|\, (\mathbf{a}_{\chi} \otimes \mathbf{1}) \Psi_{AB} \right\rangle$

III. Monotonicity of relative entropy in the finite-dimensional case

$$\langle U\eta | U\chi \rangle = \langle U(\mathbf{a}_{\eta} \Psi_{A}) | U(\mathbf{a}_{\chi} \Psi_{A}) \rangle = \langle (\mathbf{a}_{\eta} \otimes \mathbf{1}) \Psi_{AB} | (\mathbf{a}_{\chi} \otimes \mathbf{1}) \Psi_{AB} \rangle$$
$$= \langle \Psi_{AB} | (\mathbf{a}_{\eta}^{\dagger} \mathbf{a}_{\chi} \otimes \mathbf{1}) | \Psi_{AB} \rangle = \mathbf{Tr} \ \rho_{AB} (\mathbf{a}_{\eta}^{\dagger} \mathbf{a}_{\chi} \otimes \mathbf{1})$$

III. Monotonicity of relative entropy in the finite-dimensional case

$$\langle U\eta | U\chi \rangle = \langle U(\mathbf{a}_{\eta} \Psi_{A}) | U(\mathbf{a}_{\chi} \Psi_{A}) \rangle = \langle (\mathbf{a}_{\eta} \otimes \mathbf{1}) \Psi_{AB} | (\mathbf{a}_{\chi} \otimes \mathbf{1}) \Psi_{AB} \rangle$$

$$= \langle \Psi_{AB} | (\mathbf{a}_{\eta}^{\dagger} \mathbf{a}_{\chi} \otimes \mathbf{1}) | \Psi_{AB} \rangle = \mathbf{Tr} \ \rho_{AB} (\mathbf{a}_{\eta}^{\dagger} \mathbf{a}_{\chi} \otimes \mathbf{1})$$

$$= \mathbf{Tr} \ \rho_{A} \mathbf{a}_{\eta}^{\dagger} \mathbf{a}_{\chi} = \langle \Psi_{A} | \mathbf{a}_{\eta}^{\dagger} \mathbf{a}_{\chi} | \Psi_{A} \rangle = \langle \mathbf{a}_{\eta} \Psi_{A} | \mathbf{a}_{\chi} \Psi_{A} \rangle$$

III. Monotonicity of relative entropy in the finite-dimensional case

$$\langle U\eta | U\chi \rangle = \langle U(\mathbf{a}_{\eta} \Psi_{A}) | U(\mathbf{a}_{\chi} \Psi_{A}) \rangle = \langle (\mathbf{a}_{\eta} \otimes \mathbf{1}) \Psi_{AB} | (\mathbf{a}_{\chi} \otimes \mathbf{1}) \Psi_{AB} \rangle$$

$$= \langle \Psi_{AB} | (\mathbf{a}_{\eta}^{\dagger} \mathbf{a}_{\chi} \otimes \mathbf{1}) | \Psi_{AB} \rangle = \mathbf{Tr} \ \rho_{AB} (\mathbf{a}_{\eta}^{\dagger} \mathbf{a}_{\chi} \otimes \mathbf{1})$$

$$= \mathbf{Tr} \ \rho_{A} \mathbf{a}_{\eta}^{\dagger} \mathbf{a}_{\chi} = \langle \Psi_{A} | \mathbf{a}_{\eta}^{\dagger} \mathbf{a}_{\chi} | \Psi_{A} \rangle = \langle \mathbf{a}_{\eta} \Psi_{A} | \mathbf{a}_{\chi} \Psi_{A} \rangle$$

$$= \langle \eta | \chi \rangle$$

III. Monotonicity of relative entropy in the finite-dimensional case

• U commutes with the action of \mathfrak{A}_A

III. Monotonicity of relative entropy in the finite-dimensional case

• U commutes with the action of \mathfrak{A}_A

 $U(\mathbf{a} | \psi \rangle) = U(\mathbf{a} \mathbf{a}_{\psi} | \Psi_A \rangle) = (\mathbf{a} \mathbf{a}_{\psi} \otimes \mathbf{1}) | \Psi_{AB} \rangle$

III. Monotonicity of relative entropy in the finite-dimensional case

• U commutes with the action of \mathfrak{A}_A

 $U(\mathbf{a} | \psi \rangle) = U(\mathbf{a} \mathbf{a}_{\psi} | \Psi_{A} \rangle) = (\mathbf{a} \mathbf{a}_{\psi} \otimes \mathbf{1}) | \Psi_{AB} \rangle$ $= (\mathbf{a} \otimes \mathbf{1})(\mathbf{a}_{\psi} \otimes \mathbf{1}) | \Psi_{AB} \rangle = \varphi(\mathbf{a})U(|\psi\rangle)$

III. Monotonicity of relative entropy in the finite-dimensional case

• U commutes with the action of \mathfrak{A}_A

 $U(\mathbf{a} | \psi \rangle) = U(\mathbf{a} \mathbf{a}_{\psi} | \Psi_{A} \rangle) = (\mathbf{a} \mathbf{a}_{\psi} \otimes \mathbf{1}) | \Psi_{AB} \rangle$ $= (\mathbf{a} \otimes \mathbf{1})(\mathbf{a}_{\psi} \otimes \mathbf{1}) | \Psi_{AB} \rangle = \varphi(\mathbf{a})U(|\psi\rangle)$

III. Monotonicity of relative entropy in the finite-dimensional case

• U commutes with the action of \mathfrak{A}_A

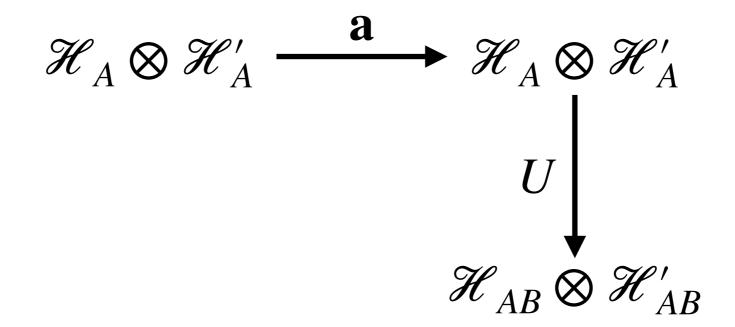
 $U(\mathbf{a} | \psi \rangle) = U(\mathbf{a} \mathbf{a}_{\psi} | \Psi_{A} \rangle) = (\mathbf{a} \mathbf{a}_{\psi} \otimes \mathbf{1}) | \Psi_{AB} \rangle$ $= (\mathbf{a} \otimes \mathbf{1})(\mathbf{a}_{\psi} \otimes \mathbf{1}) | \Psi_{AB} \rangle = \varphi(\mathbf{a})U(|\psi\rangle)$

$$\mathcal{H}_A \otimes \mathcal{H}_A'$$

III. Monotonicity of relative entropy in the finite-dimensional case

• U commutes with the action of \mathfrak{A}_A

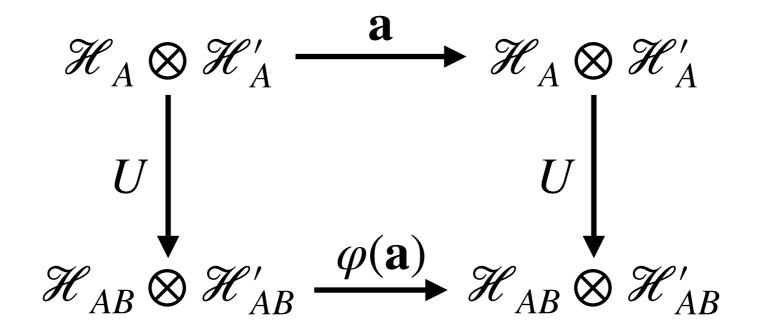
 $U(\mathbf{a} | \psi \rangle) = U(\mathbf{a} \mathbf{a}_{\psi} | \Psi_{A} \rangle) = (\mathbf{a} \mathbf{a}_{\psi} \otimes \mathbf{1}) | \Psi_{AB} \rangle$ $= (\mathbf{a} \otimes \mathbf{1})(\mathbf{a}_{\psi} \otimes \mathbf{1}) | \Psi_{AB} \rangle = \varphi(\mathbf{a})U(|\psi\rangle)$



III. Monotonicity of relative entropy in the finite-dimensional case

• U commutes with the action of \mathfrak{A}_A

$$U(\mathbf{a} | \psi \rangle) = U(\mathbf{a} \mathbf{a}_{\psi} | \Psi_{A} \rangle) = (\mathbf{a} \mathbf{a}_{\psi} \otimes \mathbf{1}) | \Psi_{AB} \rangle$$
$$= (\mathbf{a} \otimes \mathbf{1})(\mathbf{a}_{\psi} \otimes \mathbf{1}) | \Psi_{AB} \rangle = \varphi(\mathbf{a})U(|\psi\rangle)$$



III. Monotonicity of relative entropy in the finite-dimensional case

- Denote the relative modular operators $\Delta_{AB} \equiv \Delta_{\Psi_{AB}|\Phi_{AB}}$ and $\Delta_A \equiv \Delta_{\Psi_A|\Phi_A}$, then

III. Monotonicity of relative entropy in the finite-dimensional case

- Denote the relative modular operators $\Delta_{AB} \equiv \Delta_{\Psi_{AB}|\Phi_{AB}}$ and $\Delta_A \equiv \Delta_{\Psi_A|\Phi_A}$, then

 $\langle \mathbf{a}\Psi_A \,|\, \mathbf{\Delta}_A \,|\, \mathbf{b}\Psi_A \rangle = \langle \mathbf{a}\Psi_A \,|\, S_A^{\dagger}S_A \,|\, \mathbf{b}\Psi_A \rangle = \langle S_A \mathbf{b}\Psi_A \,|\, S_A \mathbf{a}\Psi_A \rangle = \langle \mathbf{b}^{\dagger}\Phi_A \,|\, \mathbf{a}^{\dagger}\Phi_A \rangle$

III. Monotonicity of relative entropy in the finite-dimensional case

- Denote the relative modular operators $\Delta_{AB} \equiv \Delta_{\Psi_{AB}|\Phi_{AB}}$ and $\Delta_A \equiv \Delta_{\Psi_A|\Phi_A}$, then

$$\langle \mathbf{a} \Psi_A \, | \, \Delta_A \, | \, \mathbf{b} \Psi_A \rangle = \langle \mathbf{a} \Psi_A \, | \, S_A^{\dagger} S_A \, | \, \mathbf{b} \Psi_A \rangle = \langle S_A \mathbf{b} \Psi_A \, | \, S_A \mathbf{a} \Psi_A \rangle = \overline{\langle \mathbf{b}^{\dagger} \Phi_A \, | \, \mathbf{a}^{\dagger} \Phi_A \rangle}$$
$$= \langle \Phi_A \, | \, \mathbf{b} \mathbf{a}^{\dagger} \, | \, \Phi_A \rangle = \mathbf{Tr} \, \sigma_A (\mathbf{b} \mathbf{a}^{\dagger})$$

III. Monotonicity of relative entropy in the finite-dimensional case

- Denote the relative modular operators $\Delta_{AB} \equiv \Delta_{\Psi_{AB}|\Phi_{AB}}$ and $\Delta_A \equiv \Delta_{\Psi_A|\Phi_A}$, then

$$\langle \mathbf{a}\Psi_A \,|\, \mathbf{\Delta}_A \,|\, \mathbf{b}\Psi_A \rangle = \langle \mathbf{a}\Psi_A \,|\, S_A^{\dagger}S_A \,|\, \mathbf{b}\Psi_A \rangle = \langle S_A \mathbf{b}\Psi_A \,|\, S_A \mathbf{a}\Psi_A \rangle = \overline{\langle \mathbf{b}^{\dagger}\Phi_A \,|\, \mathbf{a}^{\dagger}\Phi_A \rangle}$$
$$= \langle \Phi_A \,|\, \mathbf{b}\mathbf{a}^{\dagger} \,|\, \Phi_A \rangle = \mathbf{Tr} \,\, \sigma_A(\mathbf{b}\mathbf{a}^{\dagger})$$

 $\langle \mathbf{a}\Psi_A | U^{\dagger} \Delta_{AB} U | \mathbf{b}\Psi_A \rangle = \langle (\mathbf{a} \otimes \mathbf{1})\Psi_{AB} | \Delta_{AB} | (\mathbf{b} \otimes \mathbf{1})\Psi_{AB} \rangle$

III. Monotonicity of relative entropy in the finite-dimensional case

- Denote the relative modular operators $\Delta_{AB} \equiv \Delta_{\Psi_{AB}|\Phi_{AB}}$ and $\Delta_A \equiv \Delta_{\Psi_A|\Phi_A}$, then

$$\langle \mathbf{a} \Psi_A \, | \, \Delta_A \, | \, \mathbf{b} \Psi_A \rangle = \langle \mathbf{a} \Psi_A \, | \, S_A^{\dagger} S_A \, | \, \mathbf{b} \Psi_A \rangle = \langle S_A \mathbf{b} \Psi_A \, | \, S_A \mathbf{a} \Psi_A \rangle = \overline{\langle \mathbf{b}^{\dagger} \Phi_A \, | \, \mathbf{a}^{\dagger} \Phi_A \rangle}$$
$$= \langle \Phi_A \, | \, \mathbf{b} \mathbf{a}^{\dagger} \, | \, \Phi_A \rangle = \mathbf{Tr} \, \sigma_A (\mathbf{b} \mathbf{a}^{\dagger})$$

 $\langle \mathbf{a} \Psi_A | U^{\dagger} \Delta_{AB} U | \mathbf{b} \Psi_A \rangle = \langle (\mathbf{a} \otimes \mathbf{1}) \Psi_{AB} | \Delta_{AB} | (\mathbf{b} \otimes \mathbf{1}) \Psi_{AB} \rangle$ $= \langle (\mathbf{a} \otimes \mathbf{1}) \Psi_{AB} | S^{\dagger}_{AB} S_{AB} | (\mathbf{b} \otimes \mathbf{1}) \Psi_{AB} \rangle$

III. Monotonicity of relative entropy in the finite-dimensional case

- Denote the relative modular operators $\Delta_{AB} \equiv \Delta_{\Psi_{AB}|\Phi_{AB}}$ and $\Delta_A \equiv \Delta_{\Psi_A|\Phi_A}$, then

$$\langle \mathbf{a} \Psi_A \, | \, \Delta_A \, | \, \mathbf{b} \Psi_A \rangle = \langle \mathbf{a} \Psi_A \, | \, S_A^{\dagger} S_A \, | \, \mathbf{b} \Psi_A \rangle = \langle S_A \mathbf{b} \Psi_A \, | \, S_A \mathbf{a} \Psi_A \rangle = \overline{\langle \mathbf{b}^{\dagger} \Phi_A \, | \, \mathbf{a}^{\dagger} \Phi_A \rangle}$$
$$= \langle \Phi_A \, | \, \mathbf{b} \mathbf{a}^{\dagger} \, | \, \Phi_A \rangle = \mathbf{Tr} \, \sigma_A (\mathbf{b} \mathbf{a}^{\dagger})$$

$$\langle \mathbf{a} \Psi_A | U^{\dagger} \Delta_{AB} U | \mathbf{b} \Psi_A \rangle = \langle (\mathbf{a} \otimes \mathbf{1}) \Psi_{AB} | \Delta_{AB} | (\mathbf{b} \otimes \mathbf{1}) \Psi_{AB} \rangle$$

= $\langle (\mathbf{a} \otimes \mathbf{1}) \Psi_{AB} | S^{\dagger}_{AB} S_{AB} | (\mathbf{b} \otimes \mathbf{1}) \Psi_{AB} \rangle$
= $\langle S_{AB} (\mathbf{b} \otimes \mathbf{1}) \Psi_{AB} | S_{AB} (\mathbf{a} \otimes \mathbf{1}) \Psi_{AB} \rangle$

III. Monotonicity of relative entropy in the finite-dimensional case

- Denote the relative modular operators $\Delta_{AB} \equiv \Delta_{\Psi_{AB}|\Phi_{AB}}$ and $\Delta_A \equiv \Delta_{\Psi_A|\Phi_A}$, then

$$\langle \mathbf{a} \Psi_A \, | \, \boldsymbol{\Delta}_A \, | \, \mathbf{b} \Psi_A \rangle = \langle \mathbf{a} \Psi_A \, | \, S_A^{\dagger} S_A \, | \, \mathbf{b} \Psi_A \rangle = \langle S_A \mathbf{b} \Psi_A \, | \, S_A \mathbf{a} \Psi_A \rangle = \overline{\langle \mathbf{b}^{\dagger} \Phi_A \, | \, \mathbf{a}^{\dagger} \Phi_A \rangle}$$
$$= \langle \Phi_A \, | \, \mathbf{b} \mathbf{a}^{\dagger} \, | \, \Phi_A \rangle = \mathbf{Tr} \, \sigma_A (\mathbf{b} \mathbf{a}^{\dagger})$$

$$\begin{split} \langle \mathbf{a} \Psi_A \,|\, U^{\dagger} \Delta_{AB} U \,|\, \mathbf{b} \Psi_A \rangle &= \langle (\mathbf{a} \otimes \mathbf{1}) \Psi_{AB} \,|\, \Delta_{AB} \,|\, (\mathbf{b} \otimes \mathbf{1}) \Psi_{AB} \rangle \\ &= \langle (\mathbf{a} \otimes \mathbf{1}) \Psi_{AB} \,|\, S^{\dagger}_{AB} S_{AB} \,|\, (\mathbf{b} \otimes \mathbf{1}) \Psi_{AB} \rangle \\ &= \langle S_{AB} (\mathbf{b} \otimes \mathbf{1}) \Psi_{AB} \,|\, S_{AB} (\mathbf{a} \otimes \mathbf{1}) \Psi_{AB} \rangle \\ &= \langle (\mathbf{b}^{\dagger} \otimes \mathbf{1}) \Phi_{AB} \,|\, (\mathbf{a}^{\dagger} \otimes \mathbf{1}) \Phi_{AB} \rangle = \langle \Phi_{AB} \,|\, (\mathbf{b} \otimes \mathbf{1}) (\mathbf{a}^{\dagger} \otimes \mathbf{1}) \,|\, \Phi_{AB} \rangle \end{split}$$

III. Monotonicity of relative entropy in the finite-dimensional case

- Denote the relative modular operators $\Delta_{AB} \equiv \Delta_{\Psi_{AB}|\Phi_{AB}}$ and $\Delta_A \equiv \Delta_{\Psi_A|\Phi_A}$, then

$$\langle \mathbf{a} \Psi_A \, | \, \Delta_A \, | \, \mathbf{b} \Psi_A \rangle = \langle \mathbf{a} \Psi_A \, | \, S_A^{\dagger} S_A \, | \, \mathbf{b} \Psi_A \rangle = \langle S_A \mathbf{b} \Psi_A \, | \, S_A \mathbf{a} \Psi_A \rangle = \overline{\langle \mathbf{b}^{\dagger} \Phi_A \, | \, \mathbf{a}^{\dagger} \Phi_A \rangle}$$
$$= \langle \Phi_A \, | \, \mathbf{b} \mathbf{a}^{\dagger} \, | \, \Phi_A \rangle = \mathbf{Tr} \, \sigma_A (\mathbf{b} \mathbf{a}^{\dagger})$$

 $\langle \mathbf{a} \Psi_{A} | U^{\dagger} \Delta_{AB} U | \mathbf{b} \Psi_{A} \rangle = \langle (\mathbf{a} \otimes \mathbf{1}) \Psi_{AB} | \Delta_{AB} | (\mathbf{b} \otimes \mathbf{1}) \Psi_{AB} \rangle$ $= \langle (\mathbf{a} \otimes \mathbf{1}) \Psi_{AB} | S^{\dagger}_{AB} S_{AB} | (\mathbf{b} \otimes \mathbf{1}) \Psi_{AB} \rangle$ $= \langle S_{AB} (\mathbf{b} \otimes \mathbf{1}) \Psi_{AB} | S_{AB} (\mathbf{a} \otimes \mathbf{1}) \Psi_{AB} \rangle$ $= \langle (\mathbf{b}^{\dagger} \otimes \mathbf{1}) \Phi_{AB} | (\mathbf{a}^{\dagger} \otimes \mathbf{1}) \Phi_{AB} \rangle = \langle \Phi_{AB} | (\mathbf{b} \otimes \mathbf{1}) (\mathbf{a}^{\dagger} \otimes \mathbf{1}) | \Phi_{AB} \rangle$ $= \langle \Phi_{AB} | (\mathbf{b} \mathbf{a}^{\dagger} \otimes \mathbf{1}) | \Phi_{AB} \rangle = \mathbf{Tr} \ \sigma_{AB} (\mathbf{b} \mathbf{a}^{\dagger} \otimes \mathbf{1})$

III. Monotonicity of relative entropy in the finite-dimensional case

- Denote the relative modular operators $\Delta_{AB} \equiv \Delta_{\Psi_{AB}|\Phi_{AB}}$ and $\Delta_A \equiv \Delta_{\Psi_A|\Phi_A}$, then

$$\langle \mathbf{a} \Psi_A \, | \, \Delta_A \, | \, \mathbf{b} \Psi_A \rangle = \langle \mathbf{a} \Psi_A \, | \, S_A^{\dagger} S_A \, | \, \mathbf{b} \Psi_A \rangle = \langle S_A \mathbf{b} \Psi_A \, | \, S_A \mathbf{a} \Psi_A \rangle = \overline{\langle \mathbf{b}^{\dagger} \Phi_A \, | \, \mathbf{a}^{\dagger} \Phi_A \rangle}$$
$$= \langle \Phi_A \, | \, \mathbf{b} \mathbf{a}^{\dagger} \, | \, \Phi_A \rangle = \mathbf{Tr} \, \sigma_A (\mathbf{b} \mathbf{a}^{\dagger})$$

 $\langle \mathbf{a}\Psi_{A} | U^{\dagger}\Delta_{AB}U | \mathbf{b}\Psi_{A} \rangle = \langle (\mathbf{a} \otimes \mathbf{1})\Psi_{AB} | \Delta_{AB} | (\mathbf{b} \otimes \mathbf{1})\Psi_{AB} \rangle$ $= \langle (\mathbf{a} \otimes \mathbf{1})\Psi_{AB} | S^{\dagger}_{AB}S_{AB} | (\mathbf{b} \otimes \mathbf{1})\Psi_{AB} \rangle$ $= \langle S_{AB}(\mathbf{b} \otimes \mathbf{1})\Psi_{AB} | S_{AB}(\mathbf{a} \otimes \mathbf{1})\Psi_{AB} \rangle$ $= \langle (\mathbf{b}^{\dagger} \otimes \mathbf{1})\Phi_{AB} | (\mathbf{a}^{\dagger} \otimes \mathbf{1})\Phi_{AB} \rangle = \langle \Phi_{AB} | (\mathbf{b} \otimes \mathbf{1})(\mathbf{a}^{\dagger} \otimes \mathbf{1}) | \Phi_{AB} \rangle$ $= \langle \Phi_{AB} | (\mathbf{b}\mathbf{a}^{\dagger} \otimes \mathbf{1}) | \Phi_{AB} \rangle = \mathbf{Tr} \ \sigma_{AB}(\mathbf{b}\mathbf{a}^{\dagger} \otimes \mathbf{1})$ $= \mathbf{Tr} \ \sigma_{A}(\mathbf{b}\mathbf{a}^{\dagger}) = \langle \mathbf{a}\Psi_{A} | \Delta_{A} | \mathbf{b}\Psi_{A} \rangle$

III. Monotonicity of relative entropy in the finite-dimensional case

• Denote the relative modular operators $\Delta_{AB} \equiv \Delta_{\Psi_{AB}|\Phi_{AB}}$ and $\Delta_A \equiv \Delta_{\Psi_A|\Phi_A}$, then

$$U^{\dagger} \Delta_{AB} U = \Delta_A$$

• Because we have proved $\log(U^{\dagger}XU) \ge U^{\dagger}(\log X)U$ for any embedding U, we have

$$U^{\dagger}(\log \Delta_{AB})U \leq \log(U^{\dagger}\Delta_{AB}U) = \log \Delta_{A}$$

III. Monotonicity of relative entropy in the finite-dimensional case

• Denote the relative modular operators $\Delta_{AB} \equiv \Delta_{\Psi_{AB}|\Phi_{AB}}$ and $\Delta_A \equiv \Delta_{\Psi_A|\Phi_A}$, then

$$U^{\dagger} \Delta_{AB} U = \Delta_A$$

• Because we have proved $\log(U^{\dagger}XU) \ge U^{\dagger}(\log X)U$ for any embedding U, we have

$$U^{\dagger}(\log \Delta_{AB})U \leq \log(U^{\dagger}\Delta_{AB}U) = \log \Delta_{A}$$

 $\therefore \ \mathcal{S}(\rho_A \| \sigma_A) = - \langle \Psi_A | \log \Delta_A | \Psi_A \rangle \leqslant - \langle \Psi_A | U^{\dagger}(\log \Delta_{AB}) U | \Psi_A \rangle$

III. Monotonicity of relative entropy in the finite-dimensional case

• Denote the relative modular operators $\Delta_{AB} \equiv \Delta_{\Psi_{AB}|\Phi_{AB}}$ and $\Delta_A \equiv \Delta_{\Psi_A|\Phi_A}$, then

$$U^{\dagger} \Delta_{AB} U = \Delta_A$$

• Because we have proved $\log(U^{\dagger}XU) \ge U^{\dagger}(\log X)U$ for any embedding U, we have

$$U^{\dagger}(\log \Delta_{AB})U \leq \log(U^{\dagger}\Delta_{AB}U) = \log \Delta_{A}$$

 $\therefore \ \mathcal{S}(\rho_A \| \sigma_A) = - \langle \Psi_A | \log \Delta_A | \Psi_A \rangle \leq - \langle \Psi_A | U^{\dagger}(\log \Delta_{AB}) U | \Psi_A \rangle$ $= - \langle U \Psi_A | \log \Delta_{AB} | U \Psi_A \rangle = - \langle \Psi_{AB} | \log \Delta_{AB} | \Psi_{AB} \rangle$

III. Monotonicity of relative entropy in the finite-dimensional case

• Denote the relative modular operators $\Delta_{AB} \equiv \Delta_{\Psi_{AB}|\Phi_{AB}}$ and $\Delta_A \equiv \Delta_{\Psi_A|\Phi_A}$, then

$$U^{\dagger} \Delta_{AB} U = \Delta_A$$

• Because we have proved $\log(U^{\dagger}XU) \ge U^{\dagger}(\log X)U$ for any embedding U, we have

$$U^{\dagger}(\log \Delta_{AB})U \leq \log(U^{\dagger}\Delta_{AB}U) = \log \Delta_{A}$$

- Because $U^{\dagger}\Delta_{AB}U = \Delta_A$, the key point in the proof is that the logarithm function satisfies $\log(U^{\dagger}XU) \ge U^{\dagger}(\log X)U$ for any embedding U.
- So one may replace log *X* with other functions which are increasing function of a positive operator *X*.
- An example is X^{α} , $0 \leq \alpha \leq 1$

III. Monotonicity of relative entropy in the finite-dimensional case

- Because $U^{\dagger}\Delta_{AB}U = \Delta_A$, the key point in the proof is that the logarithm function satisfies $\log(U^{\dagger}XU) \ge U^{\dagger}(\log X)U$ for any embedding U.
- So one may replace log *X* with other functions which are increasing function of a positive operator *X*.
- An example is X^{α} , $0 \leq \alpha \leq 1$

 $\left< \Psi_A \right| \Delta_A^{\alpha} \left| \Psi_A \right> \geqslant \left< \Psi_{AB} \right| \Delta_{AB}^{\alpha} \left| \Psi_{AB} \right>$

III. Monotonicity of relative entropy in the finite-dimensional case

- Because $U^{\dagger}\Delta_{AB}U = \Delta_A$, the key point in the proof is that the logarithm function satisfies $\log(U^{\dagger}XU) \ge U^{\dagger}(\log X)U$ for any embedding *U*.
- So one may replace log *X* with other functions which are increasing function of a positive operator *X*.
- An example is X^{α} , $0 \leq \alpha \leq 1$

 $\langle \Psi_{A} | \Delta_{A}^{\alpha} | \Psi_{A} \rangle \geqslant \langle \Psi_{AB} | \Delta_{AB}^{\alpha} | \Psi_{AB} \rangle$ $\therefore \mathbf{Tr}_{A} \sigma_{A}^{\alpha} \rho_{A}^{1-\alpha} \geqslant \mathbf{Tr}_{AB} \sigma_{AB}^{\alpha} \rho_{AB}^{1-\alpha}, \quad 0 \leqslant \alpha \leqslant 1$

- When $\alpha = 0$, $\mathbf{Tr}_A \sigma_A^{\alpha} \rho_A^{1-\alpha} = \mathbf{Tr}_{AB} \sigma_{AB}^{\alpha} \rho_{AB}^{1-\alpha}$.
- Expanding around $\alpha = 0$

- When $\alpha = 0$, $\mathbf{Tr}_A \sigma_A^{\alpha} \rho_A^{1-\alpha} = \mathbf{Tr}_{AB} \sigma_{AB}^{\alpha} \rho_{AB}^{1-\alpha}$.
- Expanding around $\alpha = 0$

$$\mathbf{Tr}\sigma^{\alpha}\rho^{-\alpha}\rho = \mathbf{Tr}(\mathbf{1} + \alpha\log\sigma)(\mathbf{1} - \alpha\log\rho)\rho + \mathcal{O}(\alpha^2)$$

- When $\alpha = 0$, $\mathbf{Tr}_A \sigma_A^{\alpha} \rho_A^{1-\alpha} = \mathbf{Tr}_{AB} \sigma_{AB}^{\alpha} \rho_{AB}^{1-\alpha}$.
- Expanding around $\alpha = 0$

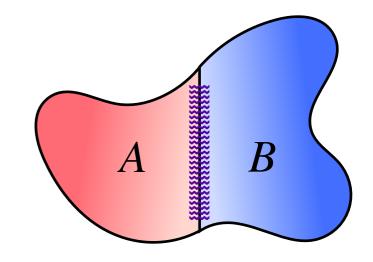
$$\mathbf{Tr}\sigma^{\alpha}\rho^{-\alpha}\rho = \mathbf{Tr}(\mathbf{1} + \alpha\log\sigma)(\mathbf{1} - \alpha\log\rho)\rho + \mathcal{O}(\alpha^2)$$
$$= 1 - \alpha\mathbf{Tr}\rho(\log\rho - \log\sigma) + \mathcal{O}(\alpha^2)$$

- When $\alpha = 0$, $\mathbf{Tr}_A \sigma_A^{\alpha} \rho_A^{1-\alpha} = \mathbf{Tr}_{AB} \sigma_{AB}^{\alpha} \rho_{AB}^{1-\alpha}$.
- Expanding around $\alpha = 0$

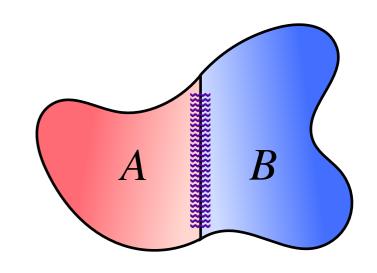
$$\mathbf{Tr}\sigma^{\alpha}\rho^{-\alpha}\rho = \mathbf{Tr}(\mathbf{1} + \alpha\log\sigma)(\mathbf{1} - \alpha\log\rho)\rho + \mathcal{O}(\alpha^2)$$
$$= 1 - \alpha\mathbf{Tr}\rho(\log\rho - \log\sigma) + \mathcal{O}(\alpha^2)$$
$$= 1 - \alpha\mathcal{S}(\rho||\sigma) + \mathcal{O}(\alpha^2)$$

- Some results in quantum information theory
 - von Neumann entropy of a density matrix ρ is $\mathcal{S} = -\mathbf{Tr} \ \rho \log \rho$;
 - For bipartite system $\mathscr{H} = \mathscr{H}_A \otimes \mathscr{H}_B$, there are reduced density matrices $\rho_A = \mathbf{Tr}_B \rho_{AB}$ and $\rho_B = \mathbf{Tr}_A \rho_{AB}$ for density matrix ρ_{AB} , one may denote $\mathscr{S}_{AB} = \mathscr{S}(\rho_{AB})$, $\mathscr{S}_A = \mathscr{S}(\rho_A)$ and $\mathscr{S}_B = \mathscr{S}(\rho_B)$;
 - The mutual information between subsystem A and B is

$$I(A;B) = \mathcal{S}_A + \mathcal{S}_B - \mathcal{S}_{AB}$$



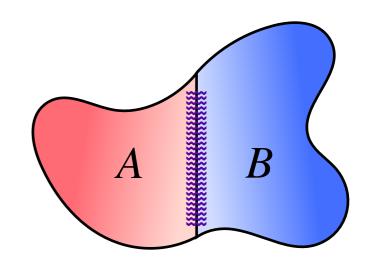
- Some results in quantum information theory
 - **Subadditivity** of quantum entropy: $I(A; B) \ge 0$ for all ρ_{AB} ;
 - Proof: define $\sigma_{AB} = \rho_A \otimes \rho_B$



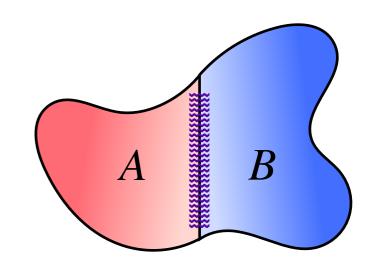
III. Monotonicity of relative entropy in the finite-dimensional case

- Some results in quantum information theory
 - **Subadditivity** of quantum entropy: $I(A; B) \ge 0$ for all ρ_{AB} ;
 - Proof: define $\sigma_{AB} = \rho_A \otimes \rho_B$

 $0 \leq \mathcal{S}(\rho_{AB} \| \sigma_{AB}) = \mathbf{Tr}_{AB} \rho_{AB} \left(\log \rho_{AB} - \log \sigma_{AB} \right)$



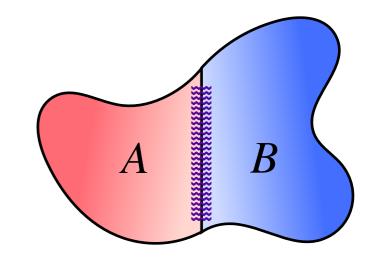
- Some results in quantum information theory
 - **Subadditivity** of quantum entropy: $I(A; B) \ge 0$ for all ρ_{AB} ;
 - Proof: define $\sigma_{AB} = \rho_A \otimes \rho_B$
 - $0 \leq \mathcal{S}(\rho_{AB} \| \sigma_{AB}) = \mathbf{Tr}_{AB} \rho_{AB} \left(\log \rho_{AB} \log \sigma_{AB} \right)$
 - $= \mathbf{T}\mathbf{r}_{AB}\rho_{AB}\log\rho_{AB} \mathbf{T}\mathbf{r}_{AB}\rho_{AB}\log\left(\rho_A\otimes\rho_B\right)$



- Some results in quantum information theory
 - **Subadditivity** of quantum entropy: $I(A; B) \ge 0$ for all ρ_{AB} ;

- Proof: define
$$\sigma_{AB} = \rho_A \otimes \rho_B$$

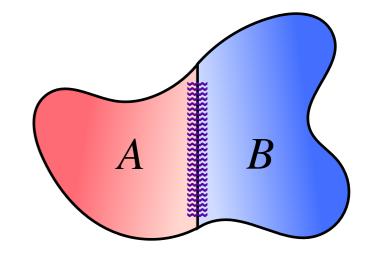
$$0 \leq \mathcal{S}(\rho_{AB} \| \sigma_{AB}) = \mathbf{Tr}_{AB} \rho_{AB} \left(\log \rho_{AB} - \log \sigma_{AB} \right)$$
$$= \mathbf{Tr}_{AB} \rho_{AB} \log \rho_{AB} - \mathbf{Tr}_{AB} \rho_{AB} \log \left(\rho_A \otimes \rho_B \right)$$
$$= -\mathcal{S}_{AB} - \mathbf{Tr}_{AB} \rho_{AB} \left(\log \rho_A \otimes \mathbf{1} + \mathbf{1} \otimes \log \rho_B \right)$$



- Some results in quantum information theory
 - **Subadditivity** of quantum entropy: $I(A; B) \ge 0$ for all ρ_{AB} ;

- Proof: define
$$\sigma_{AB} = \rho_A \otimes \rho_B$$

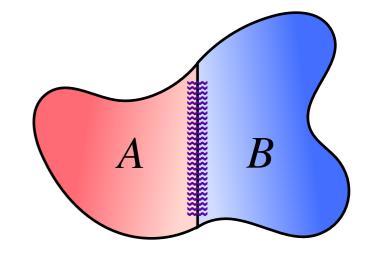
$$D \leq \mathcal{S}(\rho_{AB} \| \sigma_{AB}) = \mathbf{Tr}_{AB} \rho_{AB} \left(\log \rho_{AB} - \log \sigma_{AB} \right)$$
$$= \mathbf{Tr}_{AB} \rho_{AB} \log \rho_{AB} - \mathbf{Tr}_{AB} \rho_{AB} \log \left(\rho_A \otimes \rho_B \right)$$
$$= -\mathcal{S}_{AB} - \mathbf{Tr}_{AB} \rho_{AB} \left(\log \rho_A \otimes \mathbf{1} + \mathbf{1} \otimes \log \rho_B \right)$$
$$= -\mathcal{S}_{AB} - \mathbf{Tr}_A \rho_A \log \rho_A - \mathbf{Tr}_B \rho_B \log \rho_B$$



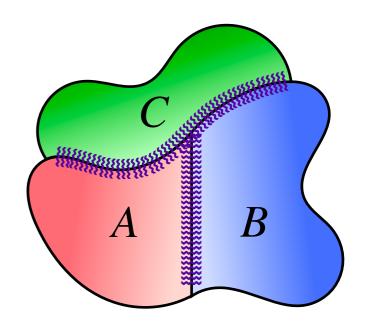
- Some results in quantum information theory
 - **Subadditivity** of quantum entropy: $I(A; B) \ge 0$ for all ρ_{AB} ;

- Proof: define
$$\sigma_{AB} = \rho_A \otimes \rho_B$$

$$0 \leq \mathcal{S}(\rho_{AB} \| \sigma_{AB}) = \mathbf{Tr}_{AB} \rho_{AB} \left(\log \rho_{AB} - \log \sigma_{AB} \right)$$
$$= \mathbf{Tr}_{AB} \rho_{AB} \log \rho_{AB} - \mathbf{Tr}_{AB} \rho_{AB} \log \left(\rho_A \otimes \rho_B \right)$$
$$= -\mathcal{S}_{AB} - \mathbf{Tr}_{AB} \rho_{AB} \left(\log \rho_A \otimes \mathbf{1} + \mathbf{1} \otimes \log \rho_B \right)$$
$$= -\mathcal{S}_{AB} - \mathbf{Tr}_A \rho_A \log \rho_A - \mathbf{Tr}_B \rho_B \log \rho_B$$
$$= -\mathcal{S}_{AB} + \mathcal{S}_A + \mathcal{S}_B = I(A; B)$$



- Some results in quantum information theory
 - Strong subadditivity of quantum entropy: consider tripartite system $\mathscr{H} = \mathscr{H}_A \otimes \mathscr{H}_B \otimes \mathscr{H}_C$, then $I(A; BC) \ge I(A; B)$ for all ρ_{ABC} ;
 - Proof: define $\sigma_{ABC} = \rho_A \otimes \rho_{BC}$

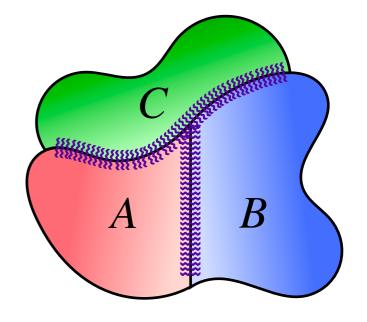


III. Monotonicity of relative entropy in the finite-dimensional case

- Some results in quantum information theory
 - Strong subadditivity of quantum entropy: consider tripartite system $\mathscr{H} = \mathscr{H}_A \otimes \mathscr{H}_B \otimes \mathscr{H}_C$, then $I(A; BC) \ge I(A; B)$ for all ρ_{ABC} ;

- Proof: define
$$\sigma_{ABC} = \rho_A \otimes \rho_{BC}$$

 $0 \leq \mathcal{S}(\rho_{ABC} \| \sigma_{ABC}) = \mathbf{Tr}_{ABC} \rho_{ABC} \left(\log \rho_{ABC} - \log \sigma_{ABC} \right)$



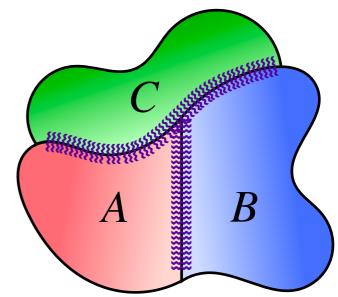
III. Monotonicity of relative entropy in the finite-dimensional case

- Some results in quantum information theory
 - Strong subadditivity of quantum entropy: consider tripartite system $\mathscr{H} = \mathscr{H}_A \otimes \mathscr{H}_B \otimes \mathscr{H}_C$, then $I(A; BC) \ge I(A; B)$ for all ρ_{ABC} ;

- Proof: define
$$\sigma_{ABC} = \rho_A \otimes \rho_{BC}$$

 $0 \leq \mathcal{S}(\rho_{ABC} \| \sigma_{ABC}) = \mathbf{Tr}_{ABC} \rho_{ABC} \left(\log \rho_{ABC} - \log \sigma_{ABC} \right)$

 $= \mathbf{T} \mathbf{r}_{AB} \rho_{ABC} \log \rho_{ABC} - \mathbf{T} \mathbf{r}_{ABC} \rho_{ABC} \log \left(\rho_A \otimes \rho_{BC} \right)$

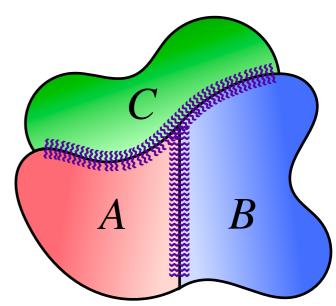


III. Monotonicity of relative entropy in the finite-dimensional case

- Some results in quantum information theory
 - Strong subadditivity of quantum entropy: consider tripartite system $\mathscr{H} = \mathscr{H}_A \otimes \mathscr{H}_B \otimes \mathscr{H}_C$, then $I(A; BC) \ge I(A; B)$ for all ρ_{ABC} ;

- Proof: define
$$\sigma_{ABC} = \rho_A \otimes \rho_{BC}$$

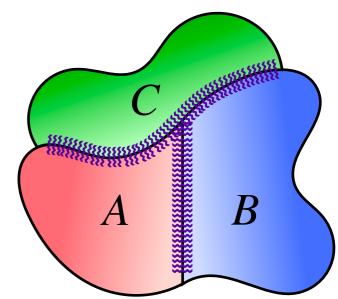
 $0 \leq \mathcal{S}(\rho_{ABC} \| \sigma_{ABC}) = \mathbf{Tr}_{ABC} \rho_{ABC} \left(\log \rho_{ABC} - \log \sigma_{ABC} \right)$ $= \mathbf{Tr}_{AB} \rho_{ABC} \log \rho_{ABC} - \mathbf{Tr}_{ABC} \rho_{ABC} \log \left(\rho_A \otimes \rho_{BC} \right)$ $= -\mathcal{S}_{ABC} - \mathbf{Tr}_A \rho_A \log \rho_A - \mathbf{Tr}_{BC} \rho_{BC} \log \rho_{BC}$



- Some results in quantum information theory
 - Strong subadditivity of quantum entropy: consider tripartite system $\mathscr{H} = \mathscr{H}_A \otimes \mathscr{H}_B \otimes \mathscr{H}_C$, then $I(A; BC) \ge I(A; B)$ for all ρ_{ABC} ;

- Proof: define
$$\sigma_{ABC} = \rho_A \otimes \rho_{BC}$$

$$0 \leq \mathcal{S}(\rho_{ABC} \| \sigma_{ABC}) = \mathbf{Tr}_{ABC} \rho_{ABC} \left(\log \rho_{ABC} - \log \sigma_{ABC} \right)$$
$$= \mathbf{Tr}_{AB} \rho_{ABC} \log \rho_{ABC} - \mathbf{Tr}_{ABC} \rho_{ABC} \log \left(\rho_A \otimes \rho_{BC} \right)$$
$$= -\mathcal{S}_{ABC} - \mathbf{Tr}_A \rho_A \log \rho_A - \mathbf{Tr}_{BC} \rho_{BC} \log \rho_{BC}$$
$$= -\mathcal{S}_{ABC} + \mathcal{S}_A + \mathcal{S}_{BC}$$



III. Monotonicity of relative entropy in the finite-dimensional case

- Some results in quantum information theory
 - Strong subadditivity of quantum entropy: consider tripartite system $\mathscr{H} = \mathscr{H}_A \otimes \mathscr{H}_B \otimes \mathscr{H}_C$, then $I(A; BC) \ge I(A; B)$ for all ρ_{ABC} ;

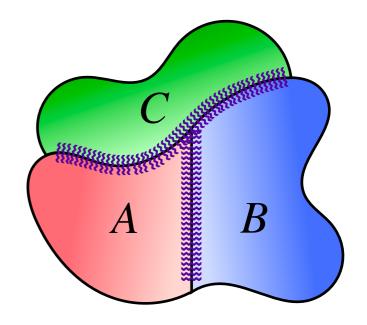
R

- Proof: define
$$\sigma_{ABC} = \rho_A \otimes \rho_{BC}$$

$$0 \leq \mathcal{S}(\rho_{ABC} \| \sigma_{ABC}) = \mathbf{Tr}_{ABC} \rho_{ABC} \left(\log \rho_{ABC} - \log \sigma_{ABC} \right)$$

= $\mathbf{Tr}_{AB} \rho_{ABC} \log \rho_{ABC} - \mathbf{Tr}_{ABC} \rho_{ABC} \log \left(\rho_A \otimes \rho_{BC} \right)$
= $-\mathcal{S}_{ABC} - \mathbf{Tr}_A \rho_A \log \rho_A - \mathbf{Tr}_{BC} \rho_{BC} \log \rho_{BC}$
= $-\mathcal{S}_{ABC} + \mathcal{S}_A + \mathcal{S}_{BC}$
= $I(A; BC)$

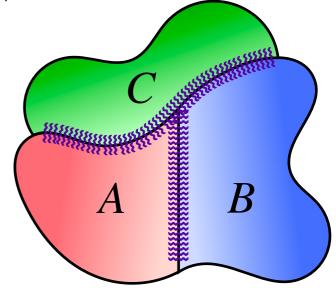
- Some results in quantum information theory
 - Strong subadditivity of quantum entropy: consider tripartite system $\mathscr{H} = \mathscr{H}_A \otimes \mathscr{H}_B \otimes \mathscr{H}_C$, then $I(A; BC) \ge I(A; B)$ for all ρ_{ABC} ;
 - Proof: define $\sigma_{ABC} = \rho_A \otimes \rho_{BC}$, one has $\mathcal{S}(\rho_{ABC} || \sigma_{ABC}) = I(A; BC)$. By monotonicity, one also has $\mathcal{S}(\rho_{ABC} || \sigma_{ABC}) \ge \mathcal{S}(\rho_{AB} || \sigma_{AB})$, so



III. Monotonicity of relative entropy in the finite-dimensional case

- Some results in quantum information theory
 - Strong subadditivity of quantum entropy: consider tripartite system $\mathscr{H} = \mathscr{H}_A \otimes \mathscr{H}_B \otimes \mathscr{H}_C$, then $I(A; BC) \ge I(A; B)$ for all ρ_{ABC} ;
 - Proof: define $\sigma_{ABC} = \rho_A \otimes \rho_{BC}$, one has $\mathcal{S}(\rho_{ABC} \| \sigma_{ABC}) = I(A; BC)$. By monotonicity, one also has $\mathcal{S}(\rho_{ABC} \| \sigma_{ABC}) \ge \mathcal{S}(\rho_{AB} \| \sigma_{AB})$, so

 $I(A;BC) = \mathcal{S}(\rho_{ABC} \| \sigma_{ABC}) \geq \mathcal{S}(\rho_{AB} \| \sigma_{AB}) = I(A;B)$



III. Monotonicity of relative entropy in the finite-dimensional case

- Some results in quantum information theory
 - Strong subadditivity of quantum entropy: consider tripartite system $\mathscr{H} = \mathscr{H}_A \otimes \mathscr{H}_B \otimes \mathscr{H}_C$, then $I(A; BC) \ge I(A; B)$ for all ρ_{ABC} ;
 - Proof: define $\sigma_{ABC} = \rho_A \otimes \rho_{BC}$, one has $\mathcal{S}(\rho_{ABC} \| \sigma_{ABC}) = I(A; BC)$. By monotonicity, one also has $\mathcal{S}(\rho_{ABC} \| \sigma_{ABC}) \ge \mathcal{S}(\rho_{AB} \| \sigma_{AB})$, so

$$\begin{split} I(A;BC) &= \mathcal{S}(\rho_{ABC} \| \sigma_{ABC}) \geq \mathcal{S}(\rho_{AB} \| \sigma_{AB}) = I(A;B) \\ \mathcal{S}_{AB} + \mathcal{S}_{AC} \geq \mathcal{S}_{ABC} + \mathcal{S}_{B} \end{split}$$



I. Overview

I. Overview

- A simple decomposition of Minkowski spacetime \mathcal{M}_D

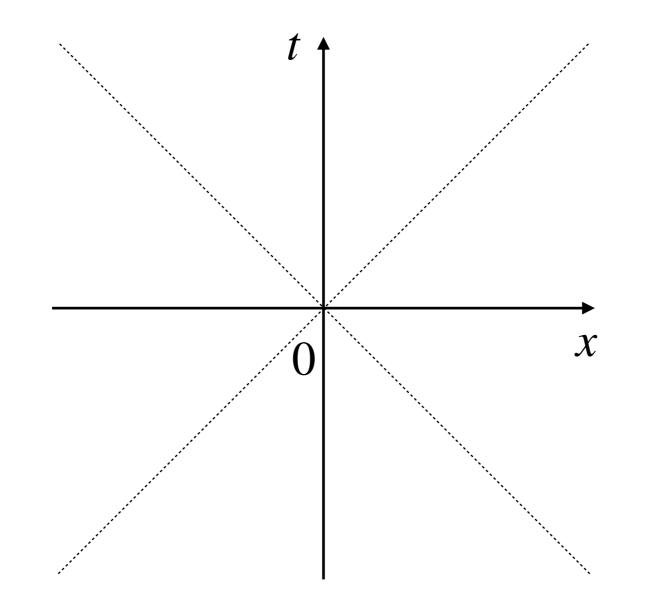
 $\mathcal{M}_D \sim \mathbb{R}^{1,1} \times \mathbb{R}^{D-2}$

I. Overview

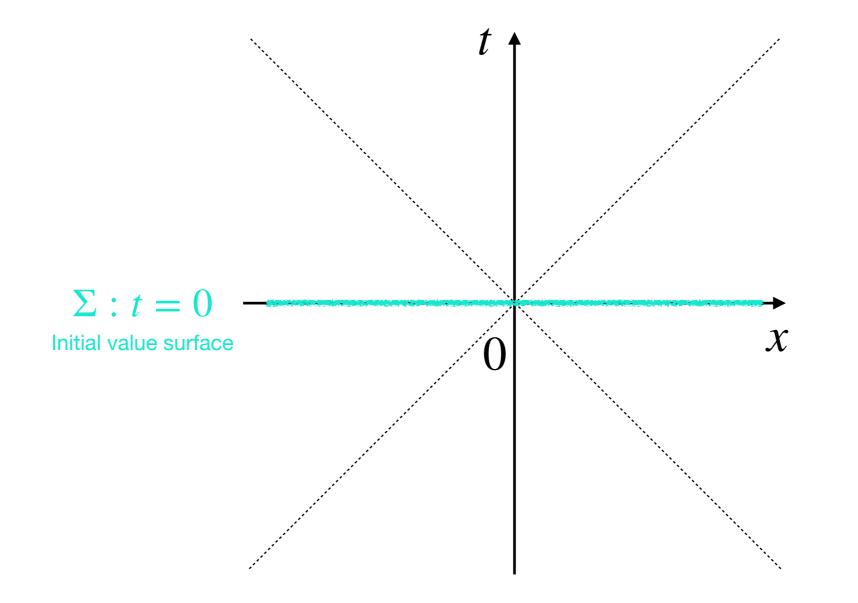
- A simple decomposition of Minkowski spacetime \mathcal{M}_D

 $\mathcal{M}_D \sim \mathbb{R}^{1,1} \times \mathbb{R}^{D-2}$ $ds^2 = dt^2 - dx^2 - d\mathbf{y} \cdot d\mathbf{y}$

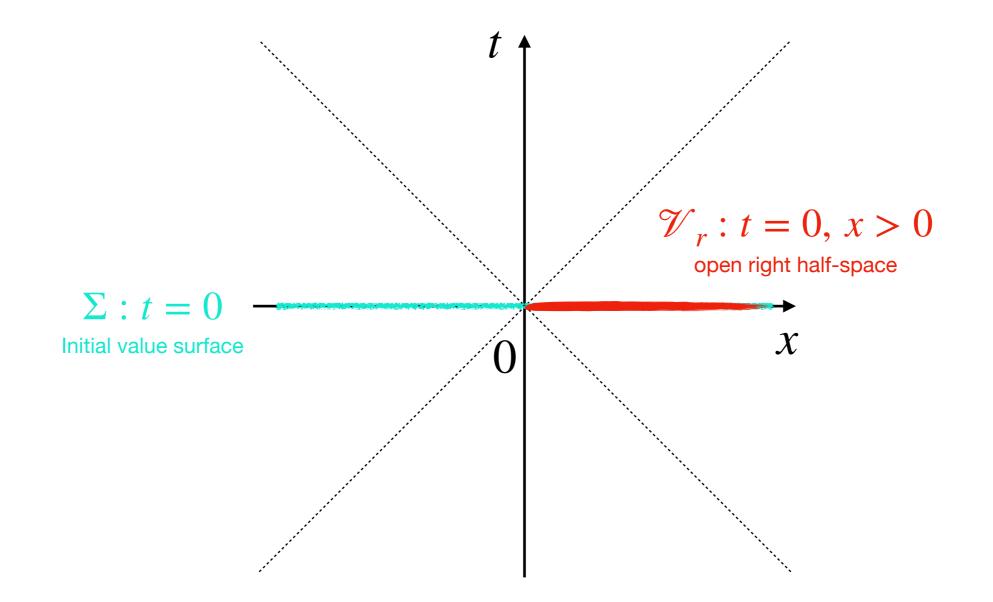
I. Overview



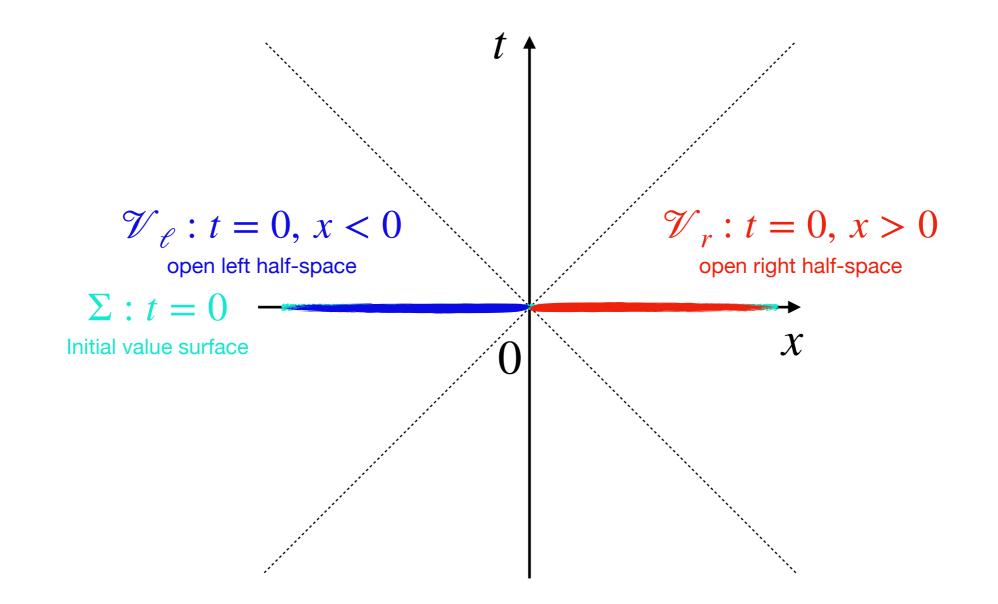
I. Overview



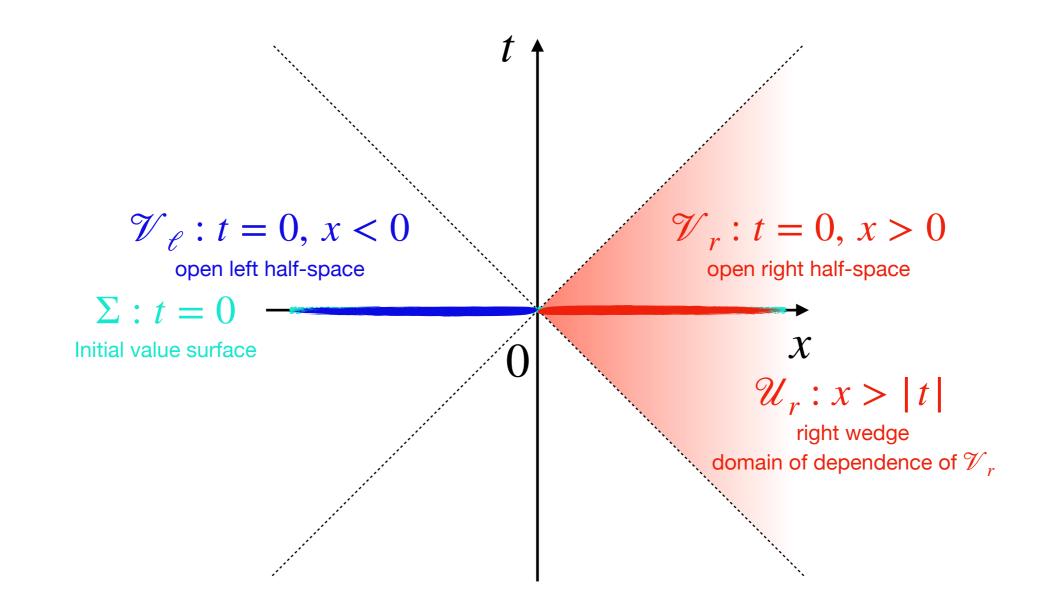
I. Overview



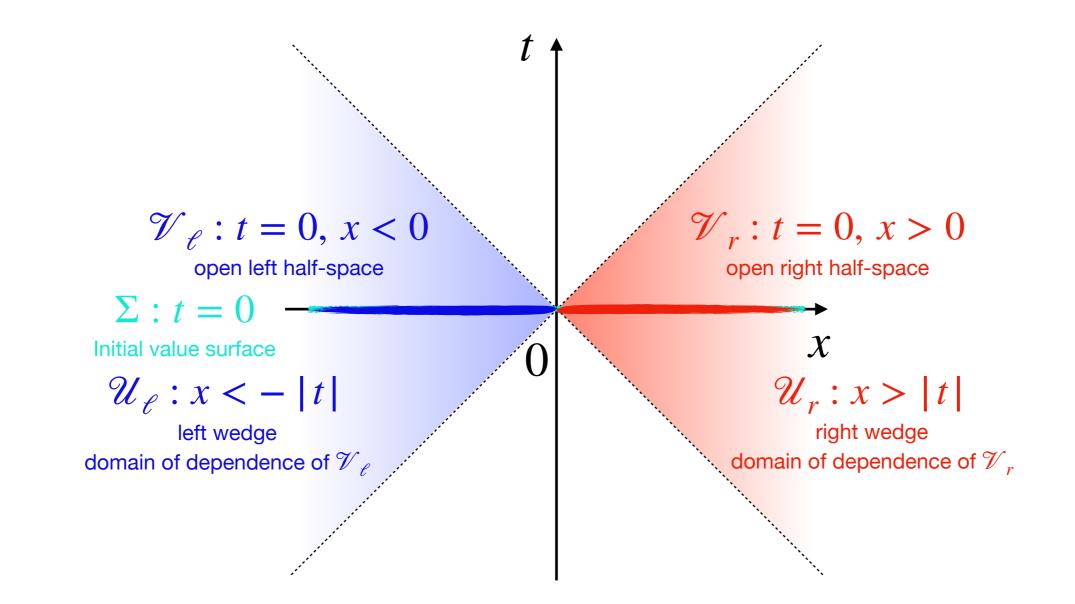
I. Overview



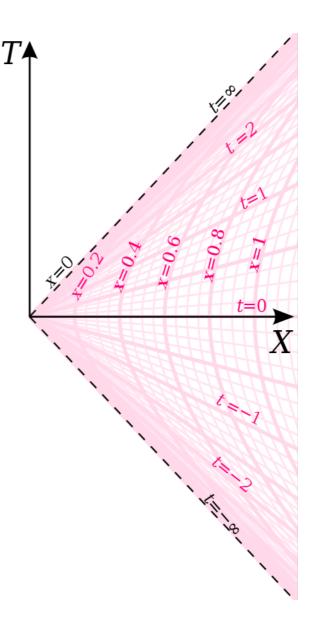
I. Overview



I. Overview



- A simple decomposition of Minkowski spacetime \mathcal{M}_D
- Rindler space (<u>Rindler, 1966</u>)



- A simple decomposition of Minkowski spacetime \mathcal{M}_D
- Rindler space (Rindler, 1966)

Wolfgang Rindler (1924/05/18-2019/02/08)

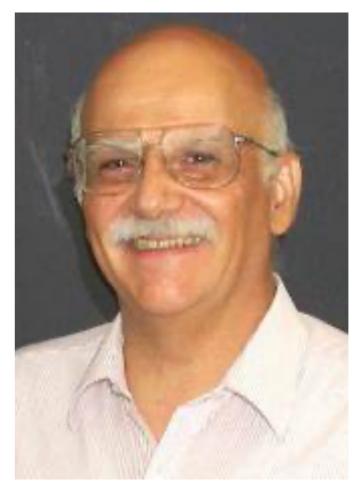
- A simple decomposition of Minkowski spacetime \mathcal{M}_D
- Rindler space
- The local observable algebra associated with the right (left) wedge $\mathscr{U}_r(\mathscr{U}_\ell)$ is denoted as $\mathfrak{A}_r(\mathfrak{A}_\ell)$.
- $\mathfrak{A}_r \subseteq \mathfrak{A}'_{\mathscr{C}}$, we will learn later that $\mathfrak{A}_r = \mathfrak{A}'_{\mathscr{C}}$.
- Let Ω be the vacuum state of a quantum field theory on \mathcal{M}_D , we will determine the modular operators Δ_Ω and J_Ω for observations in region \mathcal{U}_r .

^{• (}We do not use Carter-Penrose diagram here, because for Minkowski spacetime, a point in the diagram means \mathbb{S}^{D-2} but not \mathbb{R}^{D-2} .)

I. Overview

• The modular operators Δ_{Ω} and J_{Ω} for observations in region \mathcal{U}_r . (Wichmann and Bisognano, 1976)

Eyvind Hugo Wichmann (1928/05/30-2019/02/16)

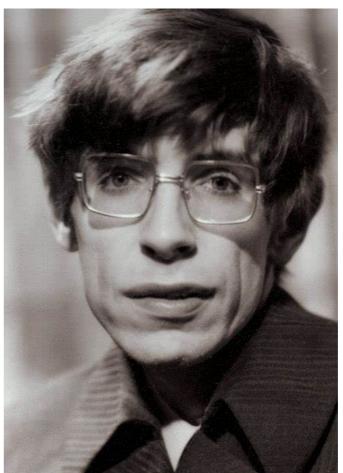


Joseph Bisognano (~1947-)

I. Overview

 A direct path integral approach for this problem is important in both Unruh effect (Unruh, 1976) and Hawking radiation (<u>Hawking</u>, <u>1975</u>, <u>1977</u>)

William George "Bill" Unruh (1945/08/28-)



Stephen William Hawking (1942/01/08-2018/03/14)

- The CPT symmetry of quantum field theory (in flat spacetime)
- Let $\xi_{(\alpha)(\dot{\beta})} = \xi_{\alpha_1 \cdots \alpha_j \dot{\beta}_1 \cdots \dot{\beta}_k}$ and $\eta_{(\dot{\alpha})(\beta)} = \eta_{\dot{\alpha}_1 \cdots \dot{\alpha}_j \beta_1 \cdots \beta_k}$ are complex representation vector of Lorentz group

- The CPT symmetry of quantum field theory (in flat spacetime)
- Let $\xi_{(\alpha)(\dot{\beta})} = \xi_{\alpha_1 \cdots \alpha_j \dot{\beta}_1 \cdots \dot{\beta}_k}$ and $\eta_{(\dot{\alpha})(\beta)} = \eta_{\dot{\alpha}_1 \cdots \dot{\alpha}_j \beta_1 \cdots \beta_k}$ are complex representation vector of Lorentz group

$$U(P)\begin{pmatrix} \xi_{(\alpha)(\dot{\beta})}\\ \eta_{(\dot{\alpha})(\beta)} \end{pmatrix} U(P)^{-1} \to \begin{pmatrix} i & \text{if } j+k \text{ is odd} \\ 1 & \text{if } j+k \text{ is even} \end{pmatrix} \begin{pmatrix} 0 & (-1)^{j}\zeta \otimes \cdots \otimes \zeta \\ (-1)^{k}\zeta \otimes \cdots \otimes \zeta & 0 \end{pmatrix} \begin{pmatrix} \xi_{(\alpha)(\dot{\beta})}\\ \eta_{(\dot{\alpha})(\beta)} \end{pmatrix}$$

- The CPT symmetry of quantum field theory (in flat spacetime)
- Let $\xi_{(\alpha)(\dot{\beta})} = \xi_{\alpha_1 \cdots \alpha_j \dot{\beta}_1 \cdots \dot{\beta}_k}$ and $\eta_{(\dot{\alpha})(\beta)} = \eta_{\dot{\alpha}_1 \cdots \dot{\alpha}_j \beta_1 \cdots \beta_k}$ are complex representation vector of Lorentz group

$$\begin{split} U(P) \begin{pmatrix} \xi_{(\alpha)(\dot{\beta})} \\ \eta_{(\dot{\alpha})(\beta)} \end{pmatrix} U(P)^{-1} &\to \begin{pmatrix} i & \text{if } j + k \text{ is odd} \\ 1 & \text{if } j + k \text{ is even} \end{pmatrix} \begin{pmatrix} 0 & (-1)^{j} \zeta \otimes \cdots \otimes \zeta \\ (-1)^{k} \zeta \otimes \cdots \otimes \zeta & 0 \end{pmatrix} \begin{pmatrix} \xi_{(\alpha)(\dot{\beta})} \\ \eta_{(\dot{\alpha})(\beta)} \end{pmatrix} \\ U(C) \begin{pmatrix} \xi_{(\alpha)(\dot{\beta})} \\ \eta_{(\dot{\alpha})(\beta)} \end{pmatrix} U(C)^{-1} &\to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \xi_{(\alpha)(\dot{\beta})} \\ \eta_{(\dot{\alpha})(\beta)} \end{pmatrix} \end{split}$$

- The CPT symmetry of quantum field theory (in flat spacetime)
- Let $\xi_{(\alpha)(\dot{\beta})} = \xi_{\alpha_1 \cdots \alpha_j \dot{\beta}_1 \cdots \dot{\beta}_k}$ and $\eta_{(\dot{\alpha})(\beta)} = \eta_{\dot{\alpha}_1 \cdots \dot{\alpha}_j \beta_1 \cdots \beta_k}$ are complex representation vector of Lorentz group

$$\begin{split} U(P) \begin{pmatrix} \xi_{(\alpha)(\dot{\beta})} \\ \eta_{(\dot{\alpha})(\beta)} \end{pmatrix} U(P)^{-1} &\to \begin{pmatrix} i & \text{if } j + k \text{ is odd} \\ 1 & \text{if } j + k \text{ is even} \end{pmatrix} \begin{pmatrix} 0 & (-1)^{j} \zeta \otimes \cdots \otimes \zeta \\ (-1)^{k} \zeta \otimes \cdots \otimes \zeta & 0 \end{pmatrix} \begin{pmatrix} \xi_{(\alpha)(\dot{\beta})} \\ \eta_{(\dot{\alpha})(\beta)} \end{pmatrix} \\ U(C) \begin{pmatrix} \xi_{(\alpha)(\dot{\beta})} \\ \eta_{(\dot{\alpha})(\beta)} \end{pmatrix} U(C)^{-1} &\to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \xi_{(\alpha)(\dot{\beta})} \\ \eta_{(\dot{\alpha})(\beta)}^{*} \end{pmatrix} \\ U(T) \begin{pmatrix} \xi_{(\alpha)(\dot{\beta})} \\ \eta_{(\dot{\alpha})(\beta)} \end{pmatrix} U(T)^{-1} &\to \begin{pmatrix} \zeta \otimes \cdots \otimes \zeta & 0 \\ 0 & \zeta \otimes \cdots \otimes \zeta \end{pmatrix} \begin{pmatrix} \xi_{(\alpha)(\dot{\beta})} \\ \eta_{(\dot{\alpha})(\beta)} \end{pmatrix}, \qquad \zeta_{\alpha\beta} = \zeta_{\dot{\alpha}\dot{\beta}} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{split}$$

- The CPT symmetry of quantum field theory (in flat spacetime)
- Let $\xi_{(\alpha)(\dot{\beta})} = \xi_{\alpha_1 \cdots \alpha_j \dot{\beta}_1 \cdots \dot{\beta}_k}$ and $\eta_{(\dot{\alpha})(\beta)} = \eta_{\dot{\alpha}_1 \cdots \dot{\alpha}_j \beta_1 \cdots \beta_k}$ are complex representation vector of Lorentz group

$$\begin{split} U(P) \begin{pmatrix} \xi_{(\alpha)}(\dot{\beta}) \\ \eta_{(\dot{\alpha})}(\beta) \end{pmatrix} U(P)^{-1} &\to \begin{pmatrix} i & \text{if } j+k \text{ is odd} \\ 1 & \text{if } j+k \text{ is even} \end{pmatrix} \begin{pmatrix} 0 & (-1)^{j}\zeta \otimes \cdots \otimes \zeta \\ (-1)^{k}\zeta \otimes \cdots \otimes \zeta & 0 \end{pmatrix} \begin{pmatrix} \xi_{(\alpha)}(\dot{\beta}) \\ \eta_{(\dot{\alpha})}(\beta) \end{pmatrix} \\ U(C) \begin{pmatrix} \xi_{(\alpha)}(\dot{\beta}) \\ \eta_{(\dot{\alpha})}(\beta) \end{pmatrix} U(C)^{-1} &\to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \xi_{(\alpha)}(\dot{\beta}) \\ \eta_{(\dot{\alpha})}^{*}(\beta) \end{pmatrix} \\ U(T) \begin{pmatrix} \xi_{(\alpha)}(\dot{\beta}) \\ \eta_{(\dot{\alpha})}(\beta) \end{pmatrix} U(T)^{-1} &\to \begin{pmatrix} \zeta \otimes \cdots \otimes \zeta & 0 \\ 0 & \zeta \otimes \cdots \otimes \zeta \end{pmatrix} \begin{pmatrix} \xi_{(\alpha)}(\dot{\beta}) \\ \eta_{(\dot{\alpha})}(\beta) \end{pmatrix}, \qquad \zeta_{\alpha\beta} = \zeta_{\dot{\alpha}\dot{\beta}} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{split}$$

$$\Theta\begin{pmatrix} \xi_{(\alpha)(\dot{\beta})}\\ \eta_{(\dot{\alpha})(\beta)} \end{pmatrix} \Theta^{-1} \to \begin{pmatrix} i & \text{if } j+k \text{ is odd} \\ 1 & \text{if } j+k \text{ is even} \end{pmatrix} \begin{pmatrix} (-1)^j & 0\\ 0 & (-1)^k \end{pmatrix} \begin{pmatrix} \xi_{(\alpha)(\dot{\beta})}^*\\ \eta_{(\dot{\alpha})(\beta)}^* \end{pmatrix}$$

I. Overview

- The CPT symmetry of quantum field theory (in flat spacetime)
- CPT Theorem: for Lorentz covariant quantum fields $\varphi_{\mu}, \dots, \psi_{\nu}$, if the weak local condition (WLC)

$$\langle \Omega | \varphi_{\mu}(x_{1}) \cdots \psi_{\nu}(x_{n}) | \Omega \rangle = i^{F} \langle \Omega | \psi_{\nu}(x_{n}) \cdots \varphi_{\mu}(x_{1}) | \Omega \rangle$$

holds in a (real) neighborhood of a Jost point $(x_1 - x_2, \dots, x_{n-1} - x_n)$, then the CPT condition

$$\langle \Omega | \varphi_{\mu}(x_1) \cdots \psi_{\nu}(x_n) | \Omega \rangle = i^F (-1)^J \langle \Omega | \psi_{\nu}(-x_n) \cdots \varphi_{\mu}(-x_1) | \Omega \rangle$$

holds everywhere.

I. Overview

- The CPT symmetry of quantum field theory (in flat spacetime)
- CPT Theorem: for Lorentz covariant quantum fields $\varphi_{\mu}, \dots, \psi_{\nu}$, if the weak local condition (WLC)

$$\langle \Omega | \varphi_{\mu}(x_{1}) \cdots \psi_{\nu}(x_{n}) | \Omega \rangle = i^{F} \langle \Omega | \psi_{\nu}(x_{n}) \cdots \varphi_{\mu}(x_{1}) | \Omega \rangle$$

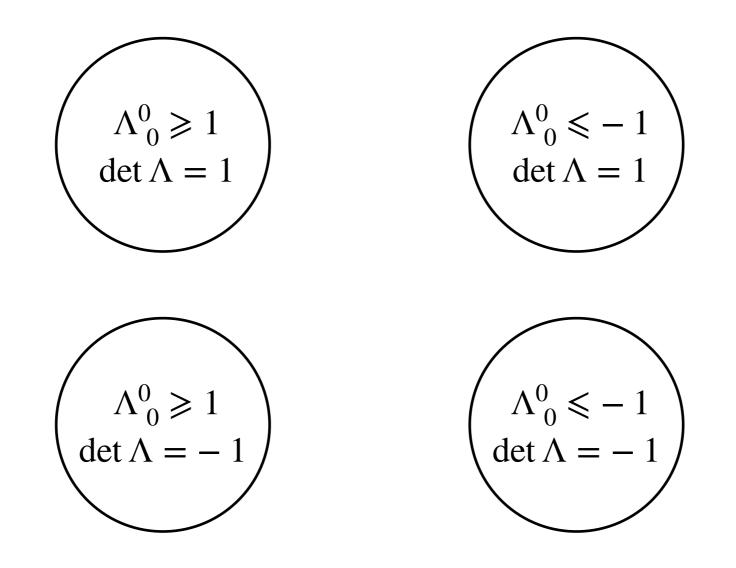
holds in a (real) neighborhood of a Jost point $(x_1 - x_2, \dots, x_{n-1} - x_n)$, then the CPT condition

$$\langle \Omega | \varphi_{\mu}(x_1) \cdots \psi_{\nu}(x_n) | \Omega \rangle = i^F (-1)^J \langle \Omega | \psi_{\nu}(-x_n) \cdots \varphi_{\mu}(-x_1) | \Omega \rangle$$

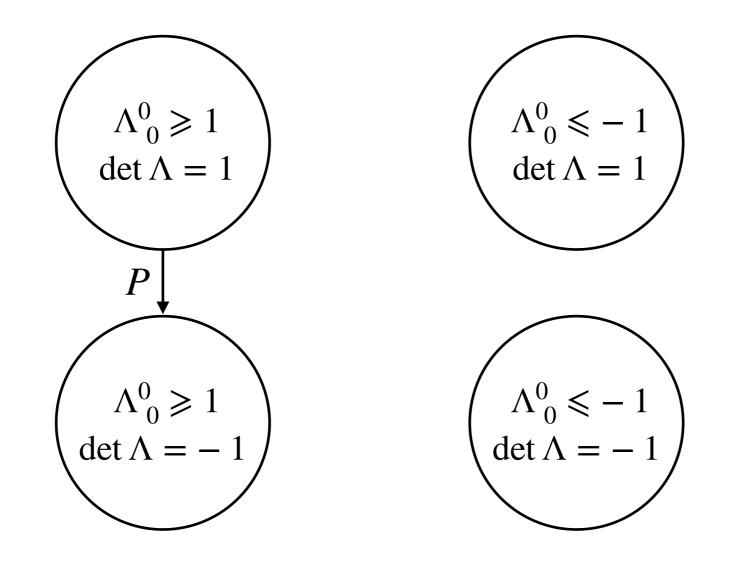
holds everywhere.

• In one sentence, CPT is always a symmetry of quantum field theory in flat spacetime.

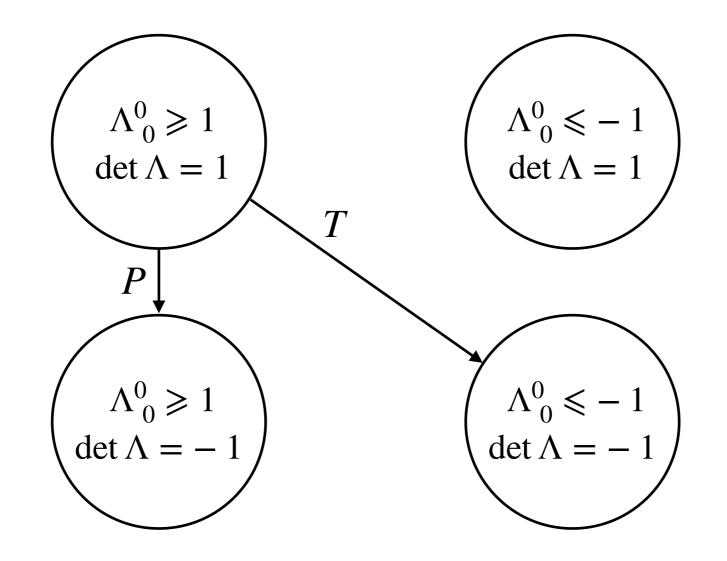
- The CPT symmetry of quantum field theory (in flat spacetime)
- The key point of the proof of the CPT theorem



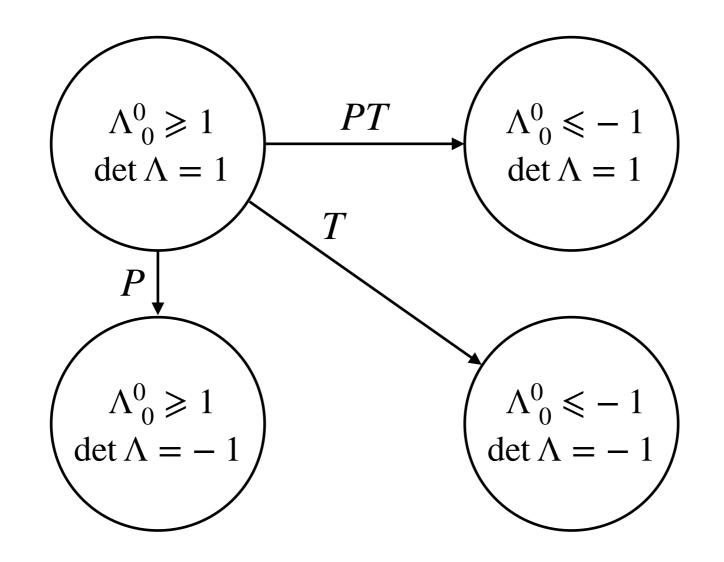
- The CPT symmetry of quantum field theory (in flat spacetime)
- The key point of the proof of the CPT theorem



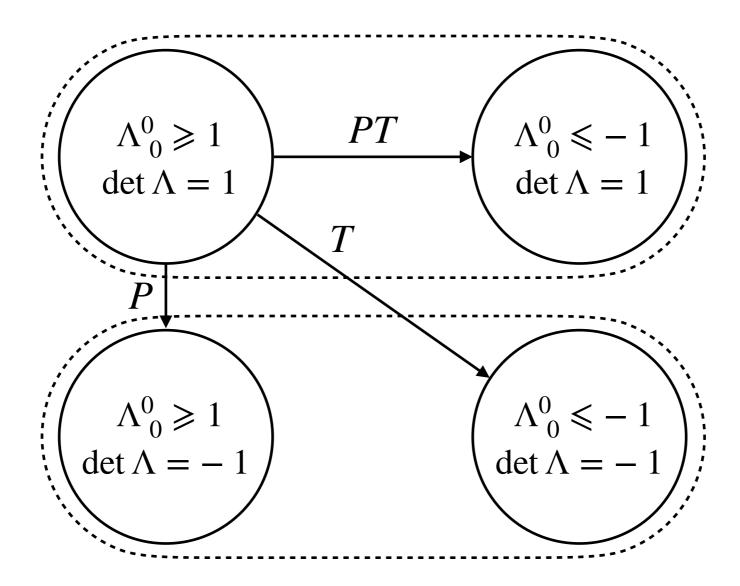
- The CPT symmetry of quantum field theory (in flat spacetime)
- The key point of the proof of the CPT theorem



- The CPT symmetry of quantum field theory (in flat spacetime)
- The key point of the proof of the CPT theorem



- The CPT symmetry of quantum field theory (in flat spacetime)
- The key point of the proof of the CPT theorem



- The CPT symmetry of quantum field theory (in flat spacetime)
- The key point of the proof of the CPT theorem: in complex Lorentz group, the PT transformation is in the same connected component with the identity element.

- The CPT symmetry of quantum field theory (in flat spacetime)
- The key point of the proof of the CPT theorem: in complex Lorentz group, the PT transformation is in the same connected component with the identity element.
- However, in *D*-dimensional spacetime, one needs to replace the CPT transformation with the CRT transformation.
- R transformation: reflection of one space spatial coordinate.

II. Path integral approach

- "The Euclidean path integrals are an effective way to compute the vacuum state (vacuum wave function) Ω of a quantum field theory. "

- Path integral (quantum mechanics): how to calculate the transition amplitude?
- Wave function $\Psi(\mathbf{q}, t) = \langle \mathbf{q} | \Psi(t) \rangle_S = \langle \mathbf{q}, t | \Psi \rangle_H$, where $| \Psi(t) \rangle_S$ is the state vector in Schrödinger representation, $| \Psi \rangle_H$ is the state in Heisenberg representation.
- One wants to calculate the transition amplitude $_{H}\langle \Psi_{2} | \Psi_{1} \rangle_{H}$ with the knowledge of the initial state $\Psi_{1}(\mathbf{q}, t_{i})$ and the final state $\Psi_{2}(\mathbf{q}, t_{f})$.

- One wants to calculate the transition amplitude $_{H}\langle \Psi_{2} | \Psi_{1} \rangle_{H}$ with the knowledge of the initial state $\Psi_{1}(\mathbf{q}, t_{i})$ and the final state $\Psi_{2}(\mathbf{q}, t_{f})$.
- Because { $|\mathbf{q}, t\rangle$ } is a complete base for every t, one has $_{H}\langle \Psi_{2}|\Psi_{1}\rangle_{H} = \int d\mathbf{q}_{f}d\mathbf{q}_{i} \ _{H}\langle \Psi_{2}|\mathbf{q}_{f}, t_{f}\rangle\langle \mathbf{q}_{f}, t_{f}|\mathbf{q}_{i}, t_{i}\rangle\langle \mathbf{q}_{i}, t_{i}|\Psi_{1}\rangle_{H}$ $= \int d\mathbf{q}_{f}d\mathbf{q}_{i}\Psi_{2}(\mathbf{q}_{f}, t_{f})^{*}\langle \mathbf{q}_{f}, t_{f}|\mathbf{q}_{i}, t_{i}\rangle\Psi_{1}(\mathbf{q}_{i}, t_{i})$
- The path integral tells us how to calculate the integral kernel (propagator)

$$\langle \mathbf{q}_f, t_f | \mathbf{q}_i, t_i \rangle = \int_{\mathbf{q}(t_i)=\mathbf{q}_i}^{\mathbf{q}(t_f)=\mathbf{q}_f} [d\mathbf{q}(t)] \exp \left[\frac{i}{\hbar} \int_{t_i}^{t_f} dt \ L(\dot{\mathbf{q}}, \mathbf{q})\right]$$

II. Path integral approach

• Now let us "remove" $_{H}\langle\Psi_{2}|$ in the formula, then we have

II. Path integral approach

• Now let us "remove" $_{H}\langle \Psi_{2}|$ in the formula, then we have $|\Psi_{1}\rangle_{H} = \int d\mathbf{q}_{f} d\mathbf{q}_{i} |\mathbf{q}_{f}, t_{f}\rangle \langle \mathbf{q}_{f}, t_{f}| \mathbf{q}_{i}, t_{i}\rangle \langle \mathbf{q}_{i}, t_{i}|\Psi_{1}\rangle_{H}$

II. Path integral approach

• Now let us "remove" $_{H}\langle \Psi_{2}|$ in the formula, then we have $|\Psi_{1}\rangle_{H} = \int d\mathbf{q}_{f} d\mathbf{q}_{i} |\mathbf{q}_{f}, t_{f}\rangle \langle \mathbf{q}_{f}, t_{f}| \mathbf{q}_{i}, t_{i}\rangle \langle \mathbf{q}_{i}, t_{i}| \Psi_{1}\rangle_{H}$ $= \int d\mathbf{q}_{f} d\mathbf{q}_{i} |\mathbf{q}_{f}, t_{f}\rangle \langle \mathbf{q}_{f}, t_{f}| \mathbf{q}_{i}, t_{i}\rangle \Psi_{1}(\mathbf{q}_{i}, t_{i})$

II. Path integral approach

• Now let us "remove" $_{H}\langle \Psi_{2} |$ in the formula, then we have $|\Psi_{1}\rangle_{H} = \int d\mathbf{q}_{f} d\mathbf{q}_{i} | \mathbf{q}_{f}, t_{f} \rangle \langle \mathbf{q}_{f}, t_{f} | \mathbf{q}_{i}, t_{i} \rangle \langle \mathbf{q}_{i}, t_{i} | \Psi_{1} \rangle_{H}$ $= \int d\mathbf{q}_{f} d\mathbf{q}_{i} | \mathbf{q}_{f}, t_{f} \rangle \langle \mathbf{q}_{f}, t_{f} | \mathbf{q}_{i}, t_{i} \rangle \Psi_{1}(\mathbf{q}_{i}, t_{i})$ $= \int d\mathbf{q}_{f} d\mathbf{q}_{i} \int_{\mathbf{q}(t_{i})=\mathbf{q}_{f}}^{\mathbf{q}(t_{f})=\mathbf{q}_{f}} [d\mathbf{q}(t)] \exp \left[\frac{i}{\hbar} \int_{t_{i}}^{t_{f}} dt L(\dot{\mathbf{q}}, \mathbf{q})\right] \Psi_{1}(\mathbf{q}_{i}, t_{i}) | \mathbf{q}_{f}, t_{f} \rangle$

II. Path integral approach

• Now let us "remove" $_{H}\langle\Psi_{2}|$ in the formula, then we have

$$|\Psi_1\rangle_H = \int d\mathbf{q}_f d\mathbf{q}_i \int_{\mathbf{q}(t_i)=\mathbf{q}_i}^{\mathbf{q}(t_f)=\mathbf{q}_f} [d\mathbf{q}(t)] \exp\left[\frac{i}{\hbar} \int_{t_i}^{t_f} dt \ L(\dot{\mathbf{q}},\mathbf{q})\right] \Psi_1(\mathbf{q}_i,t_i) |\mathbf{q}_f,t_f\rangle$$

- And the wave function of the state $|\Psi_1\rangle_H$ is given by

II. Path integral approach

• Now let us "remove" $_{H}\langle\Psi_{2}|$ in the formula, then we have

$$|\Psi_1\rangle_H = \int d\mathbf{q}_f d\mathbf{q}_i \int_{\mathbf{q}(t_i)=\mathbf{q}_i}^{\mathbf{q}(t_f)=\mathbf{q}_f} [d\mathbf{q}(t)] \exp\left[\frac{i}{\hbar} \int_{t_i}^{t_f} dt \ L(\dot{\mathbf{q}}, \mathbf{q})\right] \Psi_1(\mathbf{q}_i, t_i) |\mathbf{q}_f, t_f\rangle$$

• And the wave function of the state $|\Psi_1\rangle_H$ is given by $\Psi_1(\mathbf{q}, t) = \langle \mathbf{q}, t | \Psi_1 \rangle_H = \int d\mathbf{q}_f d\mathbf{q}_i \ \langle \mathbf{q}, t | \mathbf{q}_f, t \rangle \langle \mathbf{q}_f, t | \mathbf{q}_i, t_i \rangle \Psi_1(\mathbf{q}_i, t_i)$

II. Path integral approach

• Now let us "remove" $_{H}\langle\Psi_{2}|$ in the formula, then we have

$$|\Psi_1\rangle_H = \int d\mathbf{q}_f d\mathbf{q}_i \int_{\mathbf{q}(t_i)=\mathbf{q}_i}^{\mathbf{q}(t_f)=\mathbf{q}_f} [d\mathbf{q}(t)] \exp\left[\frac{i}{\hbar} \int_{t_i}^{t_f} dt \ L(\dot{\mathbf{q}}, \mathbf{q})\right] \Psi_1(\mathbf{q}_i, t_i) |\mathbf{q}_f, t_f\rangle$$

• And the wave function of the state $|\Psi_1\rangle_H$ is given by $\Psi_1(\mathbf{q}, t) = \langle \mathbf{q}, t | \Psi_1 \rangle_H = \int d\mathbf{q}_f d\mathbf{q}_i \ \langle \mathbf{q}, t | \mathbf{q}_f, t \rangle \langle \mathbf{q}_f, t | \mathbf{q}_i, t_i \rangle \Psi_1(\mathbf{q}_i, t_i)$ $= \int d\mathbf{q}_i \Psi_1(\mathbf{q}_i, t_i) \int_{\mathbf{q}(t_i) = \mathbf{q}_i}^{\mathbf{q}(t) = \mathbf{q}} [d\mathbf{q}(t)] \exp\left[\frac{i}{\hbar} \int_{t_i}^t dt \ L(\dot{\mathbf{q}}, \mathbf{q})\right]$

II. Path integral approach

• Now let us "remove" $_{H}\langle\Psi_{2}|$ in the formula, then we have

$$|\Psi_1\rangle_H = \int d\mathbf{q}_f d\mathbf{q}_i \int_{\mathbf{q}(t_i)=\mathbf{q}_i}^{\mathbf{q}(t_f)=\mathbf{q}_f} [d\mathbf{q}(t)] \exp\left[\frac{i}{\hbar} \int_{t_i}^{t_f} dt \ L(\dot{\mathbf{q}}, \mathbf{q})\right] \Psi_1(\mathbf{q}_i, t_i) |\mathbf{q}_f, t_f\rangle$$

- And the wave function of the state $|\Psi_1\rangle_H$ is given by $\Psi_1(\mathbf{q}, t) = \langle \mathbf{q}, t | \Psi_1 \rangle_H = \int d\mathbf{q}_f d\mathbf{q}_i \, \langle \mathbf{q}, t | \mathbf{q}_f, t \rangle \langle \mathbf{q}_f, t | \mathbf{q}_i, t_i \rangle \Psi_1(\mathbf{q}_i, t_i)$ $= \int d\mathbf{q}_i \Psi_1(\mathbf{q}_i, t_i) \int_{\mathbf{q}(t_i) = \mathbf{q}_i}^{\mathbf{q}(t) = \mathbf{q}} [d\mathbf{q}(t)] \exp\left[\frac{i}{\hbar} \int_{t_i}^t dt \, L(\dot{\mathbf{q}}, \mathbf{q})\right]$
- So we can also formally define $|\Psi_1\rangle_H$ by an path integral: $|\Psi_1\rangle_H = \int d\mathbf{q}_i \Psi_1(\mathbf{q}_i, t_i) \int_{\mathbf{q}(t_i)=\mathbf{q}_i} [d\mathbf{q}(t)] e^{iS/\hbar}$

II. Path integral approach

• From quantum mechanics to quantum field theory

II. Path integral approach

• From quantum mechanics to quantum field theory $\{ \mathbf{q}(t_i), t_i \} \to \{ \varphi(x), \Sigma_i \}$

- From quantum mechanics to quantum field theory $\{\mathbf{q}(t_i), t_i\} \rightarrow \{\varphi(x), \Sigma_i\}$
- The transition amplitude is

- From quantum mechanics to quantum field theory $\{\mathbf{q}(t_i), t_i\} \rightarrow \{\varphi(x), \Sigma_i\}$
- The transition amplitude is

$${}_{H}\!\langle \Psi_{2} | \Psi_{1} \rangle_{H} = \int \! \left(\mathscr{D} \varphi_{f} |_{\Sigma_{f}} \right) \left(\mathscr{D} \varphi_{i} |_{\Sigma_{i}} \right) \, {}_{H}\!\langle \Psi_{2} | \varphi_{f} \rangle \langle \varphi_{f} | \varphi_{i} \rangle \langle \varphi_{i} | \Psi_{1} \rangle_{H}$$

- From quantum mechanics to quantum field theory $\{\mathbf{q}(t_i), t_i\} \rightarrow \{\varphi(x), \Sigma_i\}$
- The transition amplitude is

$${}_{H} \langle \Psi_{2} | \Psi_{1} \rangle_{H} = \int \left(\mathscr{D} \varphi_{f} |_{\Sigma_{f}} \right) \left(\mathscr{D} \varphi_{i} |_{\Sigma_{i}} \right) {}_{H} \langle \Psi_{2} | \varphi_{f} \rangle \langle \varphi_{f} | \varphi_{i} \rangle \langle \varphi_{i} | \Psi_{1} \rangle_{H}$$

$$= \int \left(\mathscr{D} \varphi_{f} \right) \left(\mathscr{D} \varphi_{i} \right) {}_{2} [\varphi_{f}] \Psi_{1} [\varphi_{i}] \int_{\varphi(\Sigma_{i}) = \varphi_{i}}^{\varphi(\Sigma_{f}) = \varphi_{f}} [\mathscr{D} \varphi] \exp \left[\frac{i}{\hbar} \int d^{4}x \mathscr{L}(\varphi, \partial_{\mu} \varphi) \right]$$

II. Path integral approach

- From quantum mechanics to quantum field theory $\{\mathbf{q}(t_i), t_i\} \rightarrow \{\varphi(x), \Sigma_i\}$
- The transition amplitude is

$${}_{H} \langle \Psi_{2} | \Psi_{1} \rangle_{H} = \int \left(\mathscr{D} \varphi_{f} |_{\Sigma_{f}} \right) \left(\mathscr{D} \varphi_{i} |_{\Sigma_{i}} \right) {}_{H} \langle \Psi_{2} | \varphi_{f} \rangle \langle \varphi_{f} | \varphi_{i} \rangle \langle \varphi_{i} | \Psi_{1} \rangle_{H}$$

$$= \int \left(\mathscr{D} \varphi_{f} \right) \left(\mathscr{D} \varphi_{i} \right) {}_{2} {}^{*} [\varphi_{f}] \Psi_{1} [\varphi_{i}] \int_{\varphi(\Sigma_{i}) = \varphi_{i}}^{\varphi(\Sigma_{f}) = \varphi_{f}} [\mathscr{D} \varphi] \exp \left[\frac{i}{\hbar} \int d^{4}x \mathscr{L}(\varphi, \partial_{\mu} \varphi) \right]$$

• Again, the wave function(al) and state is

II. Path integral approach

- From quantum mechanics to quantum field theory $\{\mathbf{q}(t_i), t_i\} \rightarrow \{\varphi(x), \Sigma_i\}$
- The transition amplitude is

$${}_{H} \langle \Psi_{2} | \Psi_{1} \rangle_{H} = \int \left(\mathscr{D} \varphi_{f} |_{\Sigma_{f}} \right) \left(\mathscr{D} \varphi_{i} |_{\Sigma_{i}} \right) {}_{H} \langle \Psi_{2} | \varphi_{f} \rangle \langle \varphi_{f} | \varphi_{i} \rangle \langle \varphi_{i} | \Psi_{1} \rangle_{H}$$

$$= \int \left(\mathscr{D} \varphi_{f} \right) \left(\mathscr{D} \varphi_{i} \right) {}_{2} {}^{*} [\varphi_{f}] \Psi_{1} [\varphi_{i}] \int_{\varphi(\Sigma_{i}) = \varphi_{i}}^{\varphi(\Sigma_{f}) = \varphi_{f}} [\mathscr{D} \varphi] \exp \left[\frac{i}{\hbar} \int d^{4}x \mathscr{L}(\varphi, \partial_{\mu} \varphi) \right]$$

• Again, the wave function(al) and state is

$$\Psi[\varphi] = \int \left(\mathscr{D}\varphi_i \right) \ \Psi[\varphi_i] \int_{\varphi(\Sigma_i) = \varphi_i}^{\varphi(\Sigma) = \varphi} [\mathscr{D}\varphi] \exp\left[\frac{i}{\hbar} \int d^4 x \mathscr{L}(\varphi, \partial_\mu \varphi)\right]$$

II. Path integral approach

- From quantum mechanics to quantum field theory $\{\mathbf{q}(t_i), t_i\} \rightarrow \{\varphi(x), \Sigma_i\}$
- The transition amplitude is

$${}_{H} \langle \Psi_{2} | \Psi_{1} \rangle_{H} = \int \left(\mathscr{D} \varphi_{f} |_{\Sigma_{f}} \right) \left(\mathscr{D} \varphi_{i} |_{\Sigma_{i}} \right) {}_{H} \langle \Psi_{2} | \varphi_{f} \rangle \langle \varphi_{f} | \varphi_{i} \rangle \langle \varphi_{i} | \Psi_{1} \rangle_{H}$$

$$= \int \left(\mathscr{D} \varphi_{f} \right) \left(\mathscr{D} \varphi_{i} \right) {}_{2} {}^{*} [\varphi_{f}] \Psi_{1} [\varphi_{i}] \int_{\varphi(\Sigma_{i}) = \varphi_{i}}^{\varphi(\Sigma_{f}) = \varphi_{f}} [\mathscr{D} \varphi] \exp \left[\frac{i}{\hbar} \int d^{4}x \mathscr{L}(\varphi, \partial_{\mu} \varphi) \right]$$

• Again, the wave function(al) and state is

$$\begin{split} \Psi[\varphi] &= \int \left(\mathscr{D}\varphi_i \right) \ \Psi[\varphi_i] \int_{\varphi(\Sigma_i) = \varphi_i}^{\varphi(\Sigma) = \varphi} [\mathscr{D}\varphi] \exp\left[\frac{i}{\hbar} \int d^4 x \mathscr{L}(\varphi, \partial_\mu \varphi)\right] \\ |\Psi\rangle_H &= \int \left(\mathscr{D}\varphi_i \right) \ \Psi[\varphi_i] \int_{\varphi(\Sigma_i) = \varphi_i} [\mathscr{D}\varphi] e^{iS/\hbar} \end{split}$$

II. Path integral approach

• Vacuum to vacuum amplitude

II. Path integral approach

• Vacuum to vacuum amplitude $\langle \varphi_f(t_f) | \varphi_i(t_i) \rangle = \sum \langle \varphi_f(t_f) | n \rangle \langle n | m \rangle \langle m | \varphi_i(t_i) \rangle$

n,m

II. Path integral approach

• Vacuum to vacuum amplitude

$$\langle \varphi_f(t_f) \,|\, \varphi_i(t_i) \rangle = \sum_{n,m} \langle \varphi_f(t_f) \,|\, n \rangle \langle n \,|\, m \rangle \langle m \,|\, \varphi_i(t_i) \rangle$$

=
$$\sum_{n,m} \langle \varphi_f(0) \,|\, e^{-i\hat{H}t_f} \,|\, n \rangle \langle n \,|\, m \rangle \langle m \,|\, e^{i\hat{H}t_i} \,|\, \varphi_i(0) \rangle = \sum_{n,m} e^{-iE_n t_f + iE_m t_i} \langle \varphi_f(0) \,|\, n \rangle \langle n \,|\, m \rangle \langle m \,|\, \varphi_i(0) \rangle$$

II. Path integral approach

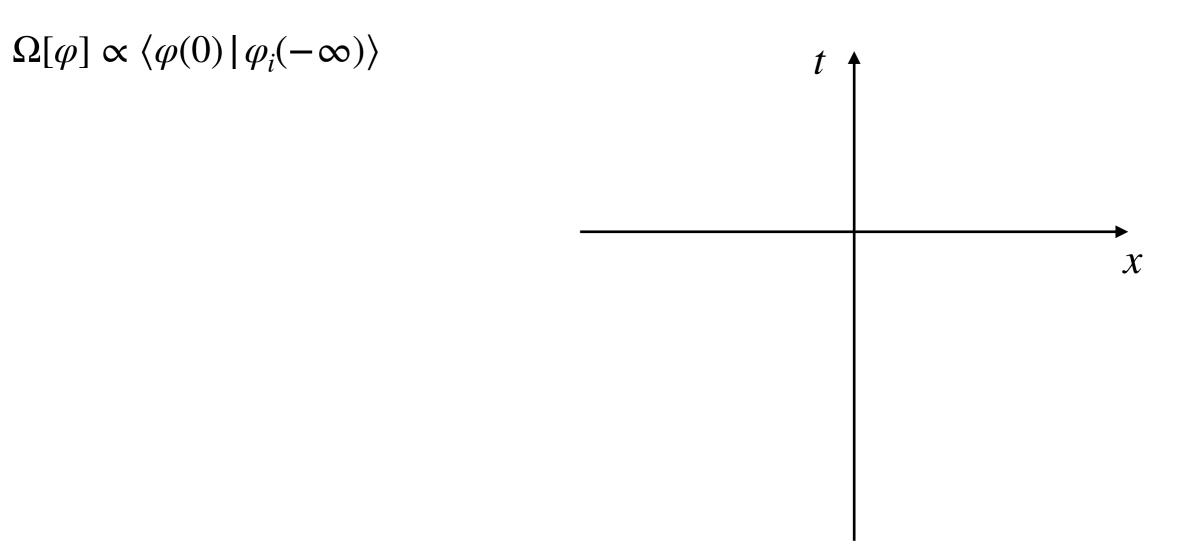
Vacuum to vacuum amplitude

 $\langle \varphi_f(t_f) \,|\, \varphi_i(t_i) \rangle = \sum_{n,m} \langle \varphi_f(t_f) \,|\, n \rangle \langle n \,|\, m \rangle \langle m \,|\, \varphi_i(t_i) \rangle$ = $\sum_{n,m} \langle \varphi_f(0) \,|\, e^{-i\hat{H}t_f} \,|\, n \rangle \langle n \,|\, m \rangle \langle m \,|\, e^{i\hat{H}t_i} \,|\, \varphi_i(0) \rangle = \sum_{n,m} e^{-iE_n t_f + iE_m t_i} \langle \varphi_f(0) \,|\, n \rangle \langle n \,|\, m \rangle \langle m \,|\, \varphi_i(0) \rangle$

• So $\langle \varphi_f(0) | \varphi_i(-\infty) \rangle = \langle \varphi_f(0) | \Omega \rangle \langle \Omega | \varphi_i(0) \rangle$ for any $\langle \varphi_f(0) |$, which gives $| \varphi_i(-\infty) \rangle \propto | \Omega \rangle$.

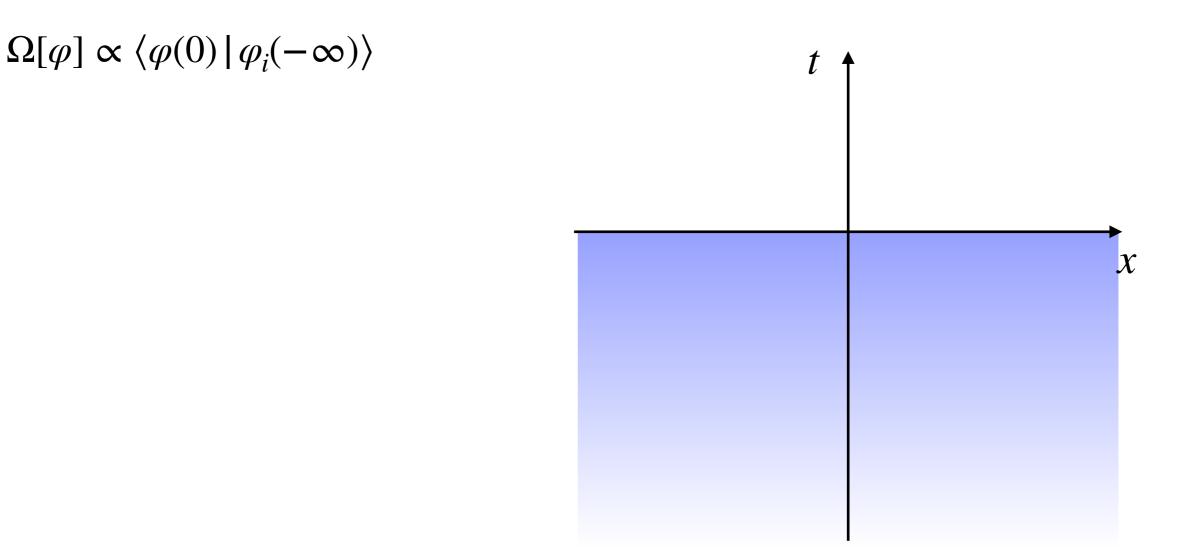
II. Path integral approach

• This result tells us that the path integral on the half-space t < 0as a functional of the boundary values of the fields $\varphi(0)$ gives a way to compute the vacuum wave functional $\Omega[\varphi]$.



II. Path integral approach

• This result tells us that the path integral on the half-space t < 0as a functional of the boundary values of the fields $\varphi(0)$ gives a way to compute the vacuum wave functional $\Omega[\varphi]$.



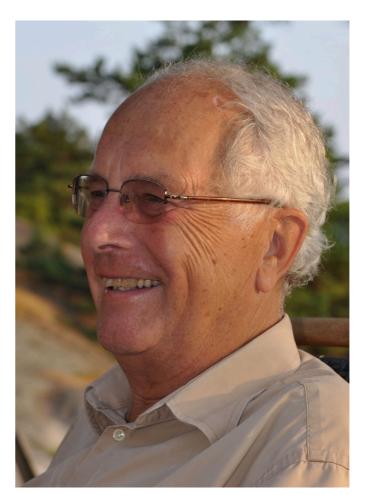
II. Path integral approach

• This result tells us that the path integral on the half-space t < 0as a functional of the boundary values of the fields $\varphi(0)$ gives a way to compute the vacuum wave functional $\Omega[\varphi]$.

II. Path integral approach

• From Minkowski metric to Euclidean metric: $t \rightarrow -i\tau$

Konrad Osterwalder (1942/07/03-)



Robert Schrader (1939/09/12-2015/11/29)

II. Path integral approach

• From Minkowski metric to Euclidean metric: $t \rightarrow -i\tau$

II. Path integral approach

• From Minkowski metric to Euclidean metric: $t \rightarrow -i\tau$

 $\varphi_E(\mathbf{x},t) \equiv \varphi_M(\mathbf{x},it)$

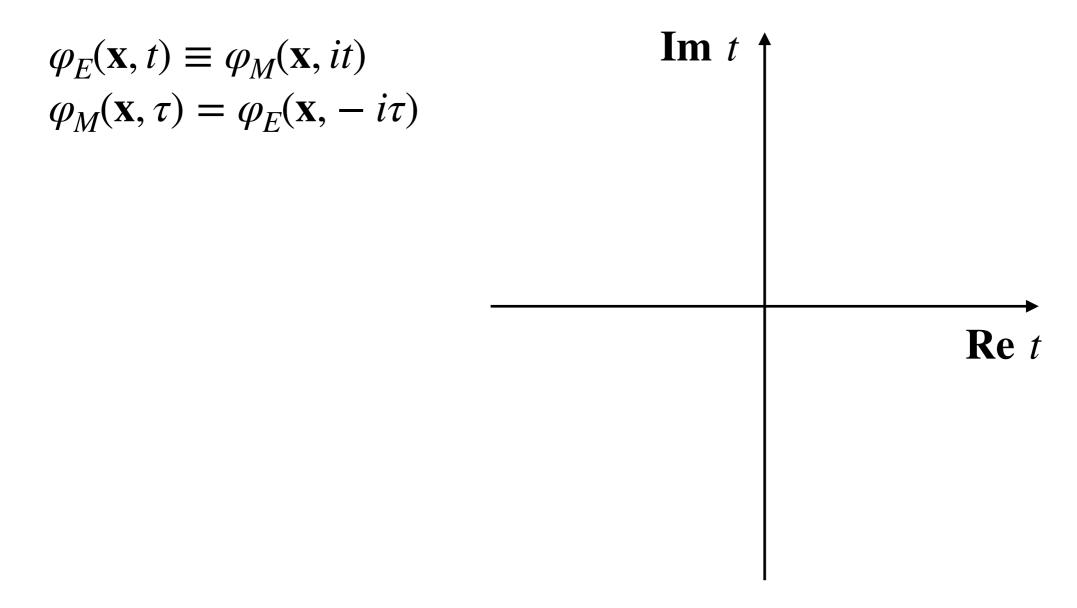
II. Path integral approach

• From Minkowski metric to Euclidean metric: $t \rightarrow -i\tau$

 $\varphi_E(\mathbf{x}, t) \equiv \varphi_M(\mathbf{x}, it)$ $\varphi_M(\mathbf{x}, \tau) = \varphi_E(\mathbf{x}, -i\tau)$

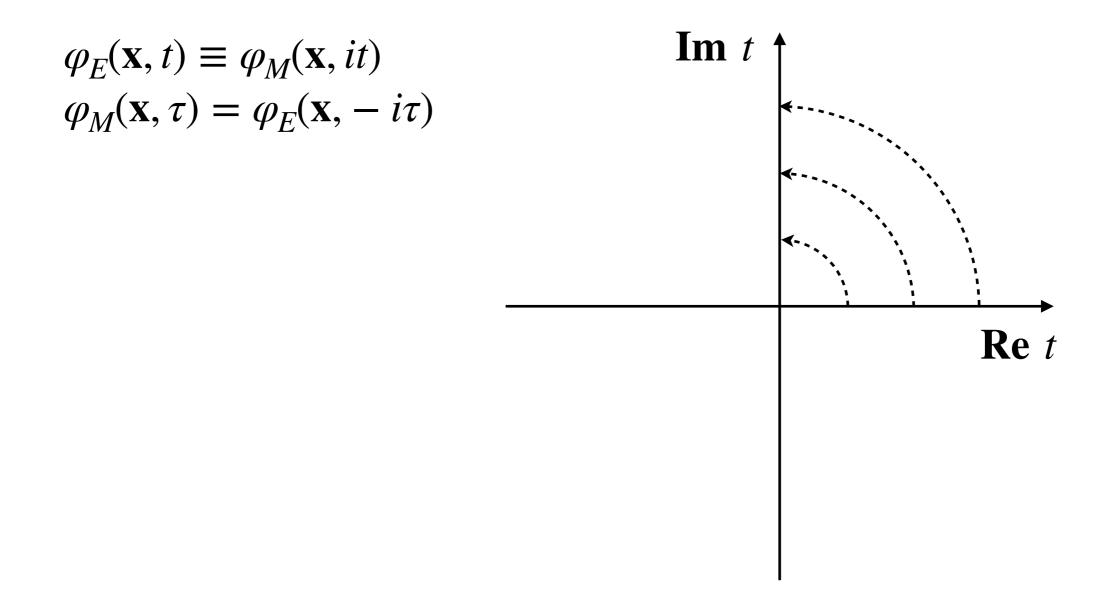
II. Path integral approach

• From Minkowski metric to Euclidean metric: $t \rightarrow -i\tau$



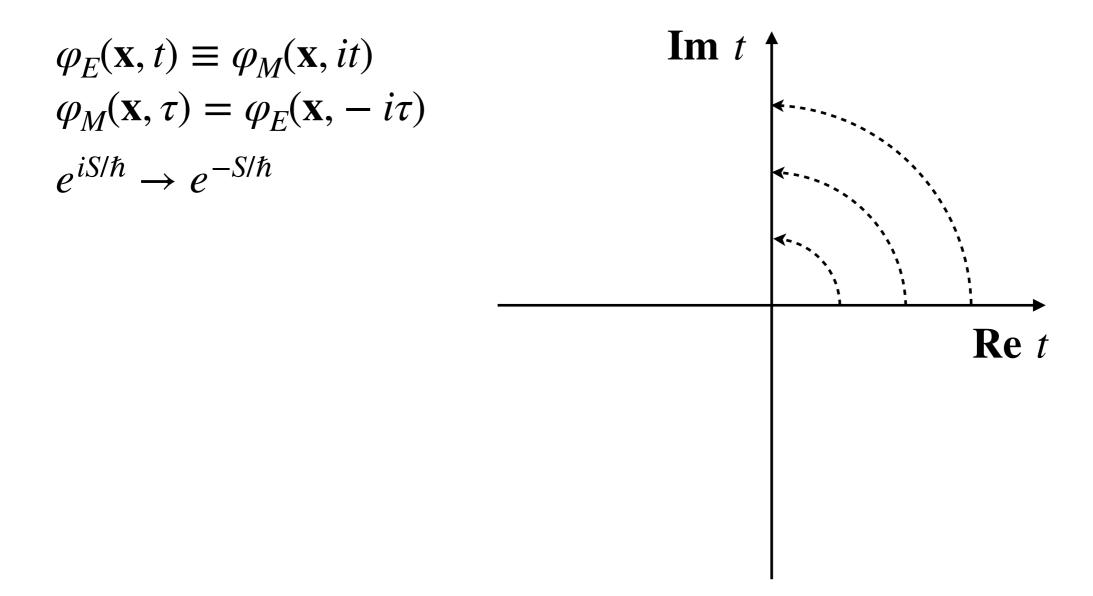
II. Path integral approach

• From Minkowski metric to Euclidean metric: $t \rightarrow -i\tau$



II. Path integral approach

• From Minkowski metric to Euclidean metric: $t \rightarrow -i\tau$

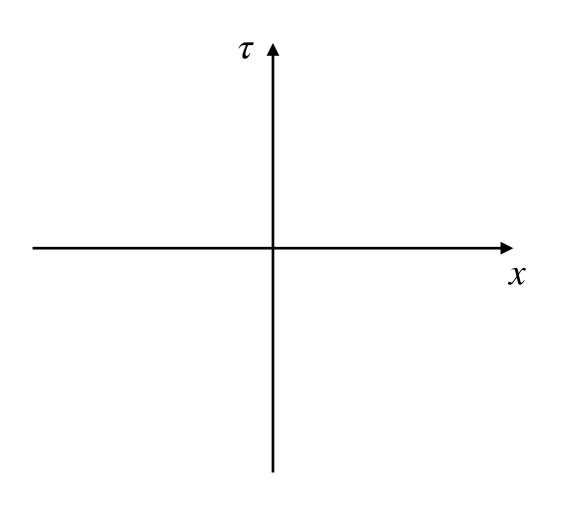


II. Path integral approach

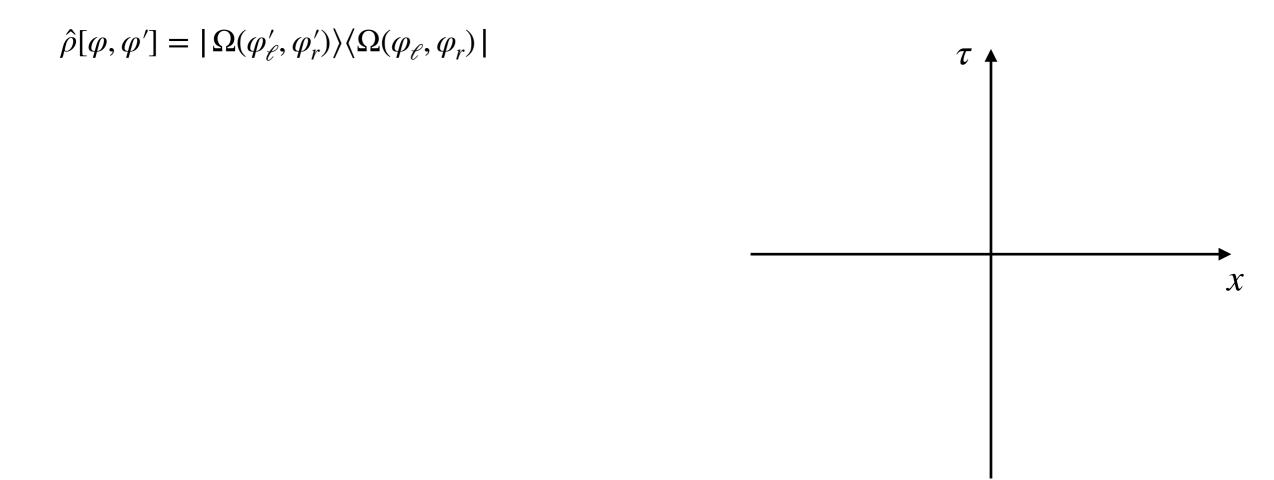
- From Minkowski metric to Euclidean metric: $t \rightarrow -i\tau$
- The vacuum wave functional can be calculated with Euclidean path integral.
- If the Hilbert space ℋ of a quantum field theory can be factorized as ℋ = ℋ_ℓ ⊗ ℋ_r, where ℋ_ℓ and ℋ_r are Hilbert spaces of degrees of freedom located at left-wedge and right-wedge, respectively, what we want to calculate is the partial trace over ℋ_ℓ of the density matrix |Ω⟩⟨Ω|.

$$\rho_r = \mathbf{Tr}_{\mathcal{H}_\ell} |\Omega\rangle \langle \Omega| = ?$$

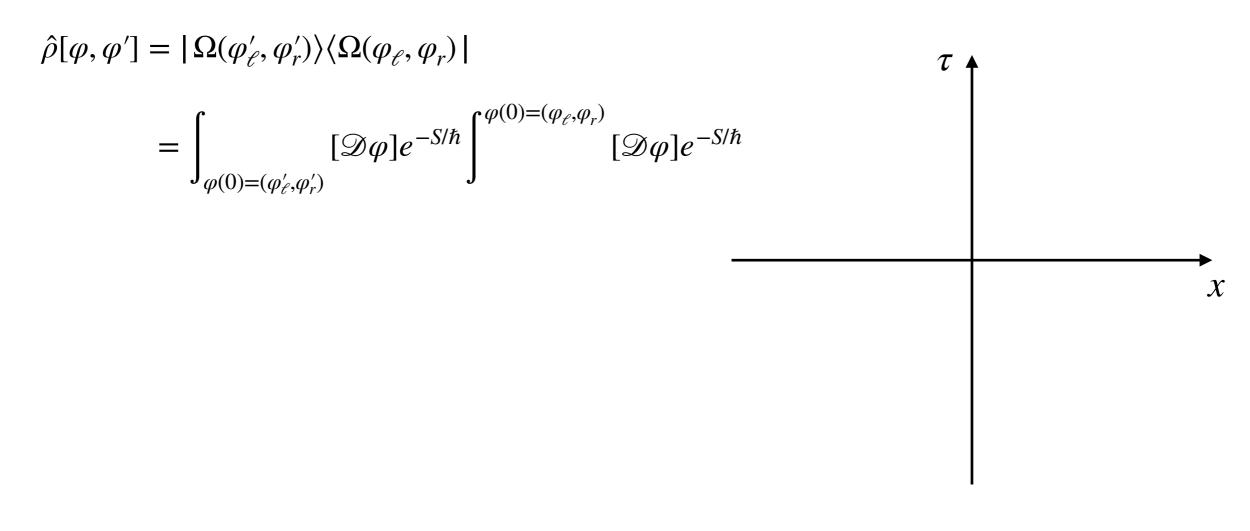
II. Path integral approach



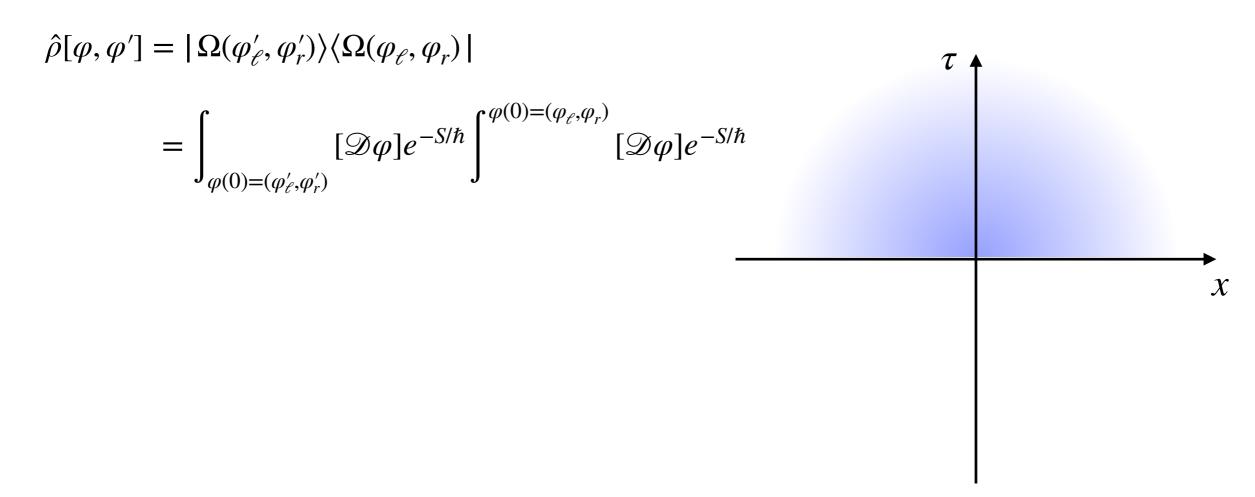
II. Path integral approach



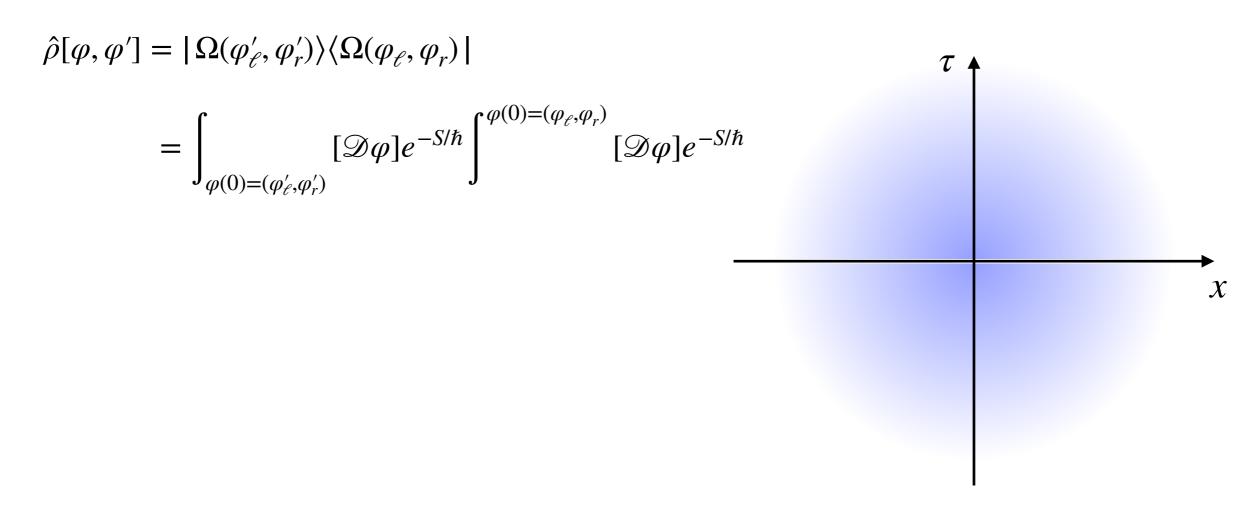
II. Path integral approach



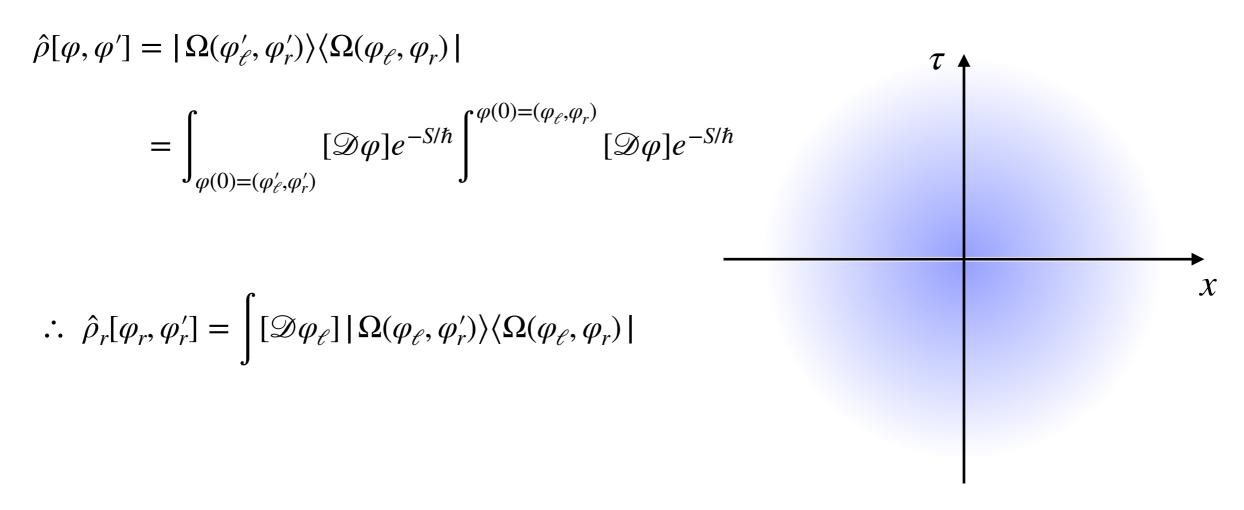
II. Path integral approach



II. Path integral approach



II. Path integral approach



II. Path integral approach

$$\hat{\rho}[\varphi,\varphi'] = |\Omega(\varphi'_{\ell},\varphi'_{r})\rangle\langle\Omega(\varphi_{\ell},\varphi_{r})|$$

$$= \int_{\varphi(0)=(\varphi'_{\ell},\varphi'_{r})} [\mathscr{D}\varphi]e^{-S/\hbar} \int^{\varphi(0)=(\varphi_{\ell},\varphi_{r})} [\mathscr{D}\varphi]e^{-S/\hbar}$$

$$\therefore \quad \hat{\rho}_{r}[\varphi_{r},\varphi'_{r}] = \int [\mathscr{D}\varphi_{\ell}] |\Omega(\varphi_{\ell},\varphi'_{r})\rangle\langle\Omega(\varphi_{\ell},\varphi_{r})|$$

$$= \int_{\varphi_{r}(0)=\varphi'_{r}} [\mathscr{D}\varphi]e^{-S/\hbar} \int^{\varphi_{r}(0)=\varphi_{r}} [\mathscr{D}\varphi]e^{-S/\hbar}$$

II. Path integral approach

$$\begin{split} \hat{\rho}[\varphi,\varphi'] &= |\Omega(\varphi'_{\ell},\varphi'_{r})\rangle \langle \Omega(\varphi_{\ell},\varphi_{r})| \\ &= \int_{\varphi(0)=(\varphi'_{\ell},\varphi'_{r})} [\mathscr{D}\varphi] e^{-S/\hbar} \int^{\varphi(0)=(\varphi_{\ell},\varphi_{r})} [\mathscr{D}\varphi] e^{-S/\hbar} \end{split}$$

$$\therefore \quad \hat{\rho}_{r}[\varphi_{r},\varphi'_{r}] &= \int [\mathscr{D}\varphi_{\ell}] |\Omega(\varphi_{\ell},\varphi'_{r})\rangle \langle \Omega(\varphi_{\ell},\varphi_{r})| \\ &= \int_{\varphi_{r}(0)=\varphi'_{r}} [\mathscr{D}\varphi] e^{-S/\hbar} \int^{\varphi_{r}(0)=\varphi_{r}} [\mathscr{D}\varphi] e^{-S/\hbar} \end{split}$$

II. Path integral approach

- The boundary condition φ of the quantum fields at $\tau = 0$ can be separated to the boundary conditions on the left half-space φ_{ℓ} and the boundary conditions on the left half-space φ_r .
- So the gluing gives a spacetime $W_{2\pi}$ (wedge- 2π), a copy of Euclidean space except that it has been "cut" along the half-hyperplane $\tau = 0, x > 0$.
- In this path integral, the φ_r and φ'_r are the boundary values below and above the cut.
- How to calculate the path integral?

II. Path integral approach

- Considering the wedge W_{θ} of opening angle θ .
- Euclidean rotation

 R_{θ}

II. Path integral approach

- Considering the wedge W_{θ} of opening angle θ .
- Euclidean rotation

 $R_{\theta}\begin{pmatrix}\tau\\x\end{pmatrix} = \begin{pmatrix}\cos\theta & \sin\theta\\-\sin\theta & \cos\theta\end{pmatrix}\begin{pmatrix}\tau\\x\end{pmatrix}$

• The path integral is in fact the matrix element of the (real or imaginary) time translation operator

• The operator translates the initial value surface to the final surface.

II. Path integral approach

- Considering the wedge W_{θ} of opening angle θ .
- Euclidean rotation

 $R_{\theta}\begin{pmatrix}\tau\\x\end{pmatrix} = \begin{pmatrix}\cos\theta & \sin\theta\\-\sin\theta & \cos\theta\end{pmatrix}\begin{pmatrix}\tau\\x\end{pmatrix}$

• The path integral is in fact the matrix element of the (real or imaginary) time translation operator

 $\left\langle \varphi_f(x,\tau_f) \, \big| \, \varphi_i(x,\tau_i) \right\rangle = \int_{\varphi(\tau_i)=\varphi_i}^{\varphi(\tau_f)=\varphi_f} [\mathcal{D}\varphi] e^{-S/\hbar}$

• The operator translates the initial value surface to the final surface.

II. Path integral approach

- Considering the wedge W_{θ} of opening angle θ .
- Euclidean rotation

 $R_{\theta}\begin{pmatrix}\tau\\x\end{pmatrix} = \begin{pmatrix}\cos\theta & \sin\theta\\-\sin\theta & \cos\theta\end{pmatrix}\begin{pmatrix}\tau\\x\end{pmatrix}$

• The path integral is in fact the matrix element of the (real or imaginary) time translation operator

 $\left\langle \varphi_f(x,\tau_f) \, \middle| \, \varphi_i(x,\tau_i) \right\rangle = \int_{\varphi(\tau_i)=\varphi_i}^{\varphi(\tau_f)=\varphi_f} [\mathcal{D}\varphi] e^{-S/\hbar} \\ \left\langle \varphi_f(x,\tau_f) \, \middle| \, \varphi_i(x,\tau_i) \right\rangle = \left\langle \varphi_f(x,0) \, \middle| \, U(\tau_f,0) U(0,\tau_i) \, \middle| \, \varphi_i(x,0) \right\rangle = \left\langle \varphi_f(x,0) \, \middle| \exp(-\hat{H}(\tau_f-\tau_i)) \, \middle| \, \varphi_i(x,0) \right\rangle$

The operator translates the initial value surface to the final surface.

II. Path integral approach

• Going back to Minkowski spacetime $\tau = it$:

$$R_{\theta}\begin{pmatrix}t\\x\end{pmatrix} \to R_{\theta}\begin{pmatrix}\tau\\x\end{pmatrix} = \begin{pmatrix}\tau\cos\theta + x\sin\theta\\-\tau\sin\theta + x\cos\theta\end{pmatrix} = \begin{pmatrix}iR(\theta)t\\R(\theta)x\end{pmatrix}$$

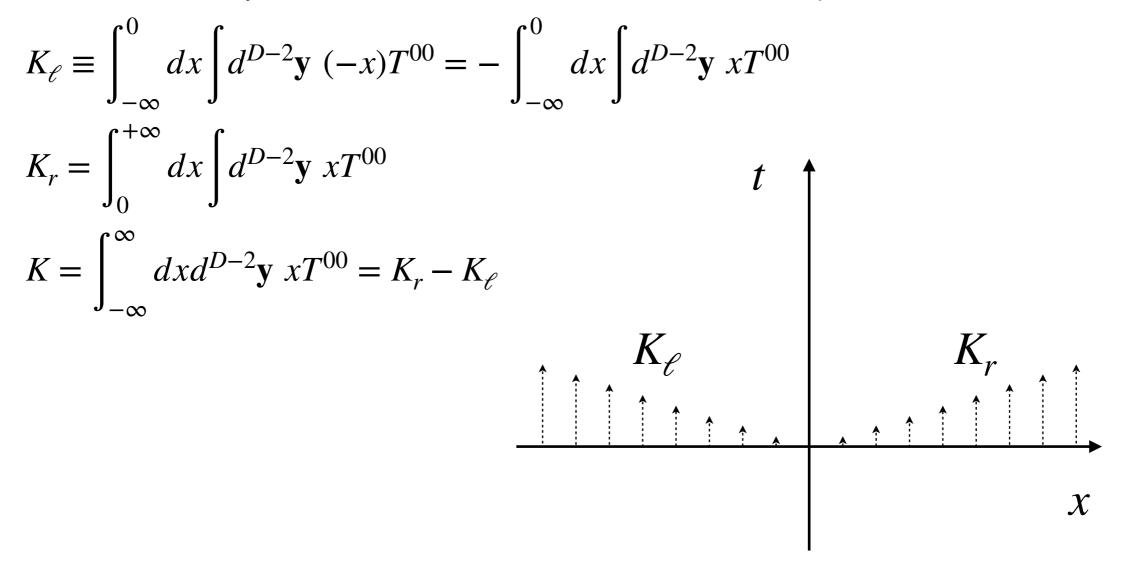
$$\therefore R(\theta)t = -i\tau\cos\theta - ix\sin\theta = t\cos\theta - ix\sin\theta\\R(\theta)x = -\tau\sin\theta + x\cos\theta = -it\sin\theta + x\sin\theta$$

$$\Rightarrow R_{\theta}\begin{pmatrix}t\\x\end{pmatrix} = \begin{pmatrix}\cos\theta & -i\sin\theta\\-i\sin\theta & \cos\theta\end{pmatrix}\begin{pmatrix}t\\x\end{pmatrix} = \begin{pmatrix}\cosh(-i\theta) & \sinh(-i\theta)\\\sinh(-i\theta) & \cosh(-i\theta)\end{pmatrix}\begin{pmatrix}t\\x\end{pmatrix}$$

• So the wedge path integral W_{θ} in Euclidean space is a Lorentz boost of the t - x plane by an imaginary boost parameter $-i\theta$.

II. Path integral approach

• One can formally separate the boost generator to the left half-space part K_{ℓ} and the right half-space part K_r .



II. Path integral approach

- One can formally separate the boost generator to the left half-space part K_{ℓ} and the right half-space part K_r .
- Although $K = K_r K_\ell$ is a well-defined operator, K_ℓ and K_r have well-defined matrix elements $\langle \chi | K_\ell | \psi \rangle$ and $\langle \chi | K_r | \psi \rangle$ between suitable Hilbert space states $|\chi\rangle$ and $|\psi\rangle$, if one tries to compute the norm of the state $K_\ell | \chi \rangle$ or $K_r | \chi \rangle$, one will find a universal UV-divergence near x = 0, independent of the choice of $|\chi\rangle$.
- This is related to the fact that the factorization $\mathcal{H} = \mathcal{H}_{\ell} \otimes \mathcal{H}_{r}$ is not really correct.

II. Path integral approach

- The unitary operator generated by the self-adjoint operator *K* with a real boost parameter η is $\exp(-i\eta K)$.
- When $\eta = -i\theta$, the operator becomes $\exp(-\theta K)$.
- So in real time language, the path integral on the wedge W_{θ} constructs the operator $\exp(-\theta K_r)$.
- To get the reduced density matrix ρ_r , we need to set $\theta = 2\pi$:

$$\rho_r = \exp(-2\pi K_r)$$

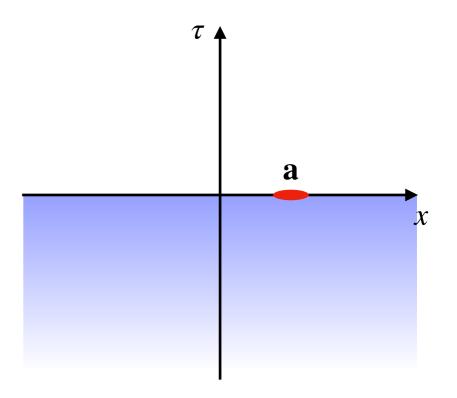
II. Path integral approach

• With the assumption that $\mathscr{H} = \mathscr{H}_{\ell} \otimes \mathscr{H}_{r}$ (which is not correct), we have (because $[K_{\ell}, K_{r}] = 0$)

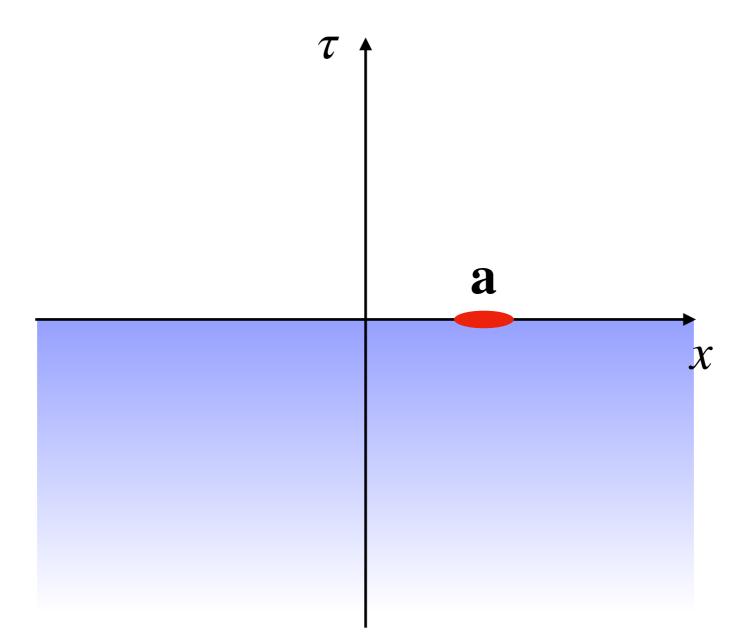
$$\Delta_{\Omega} = \rho_r \otimes \rho_{\ell}^{-1} = \exp(-2\pi K_r) \exp(2\pi K_{\ell}) = \exp(-2\pi K)$$

II. Path integral approach

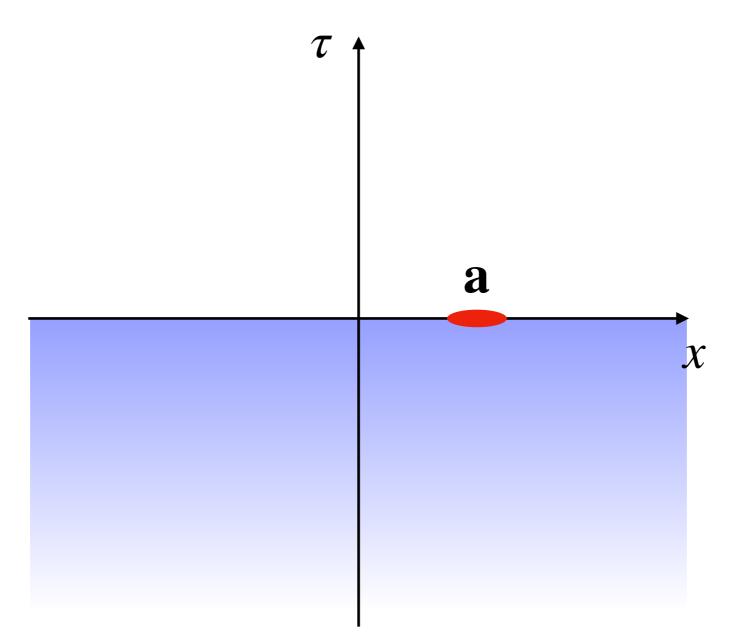
- Next, let us consider a state $\mathbf{a} | \Omega \rangle$ with $\mathbf{a} \in \mathfrak{A}_r$.
- We assume that the local operator is given by fields without smearing in time.
- Then the state can be given by a path integral on the lower halfspace with operator **a** inserted on the right half of the boundary.



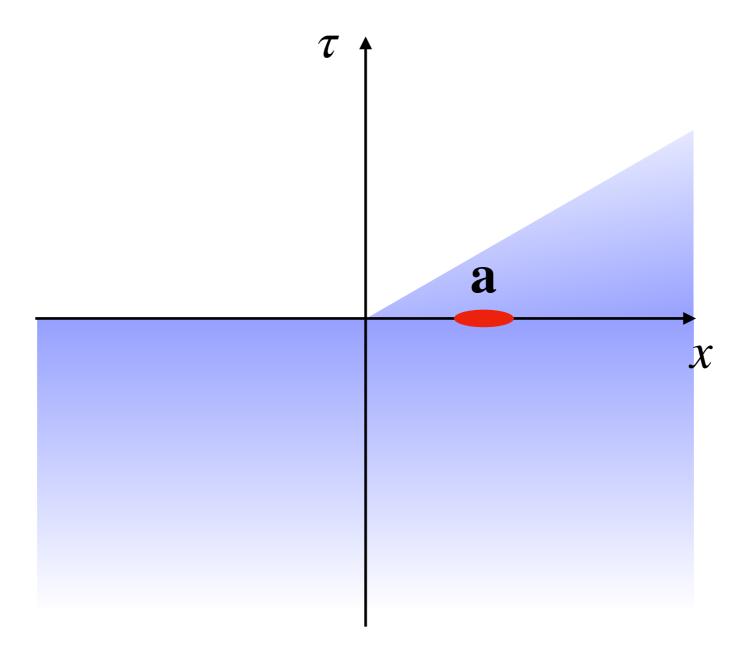
II. Path integral approach



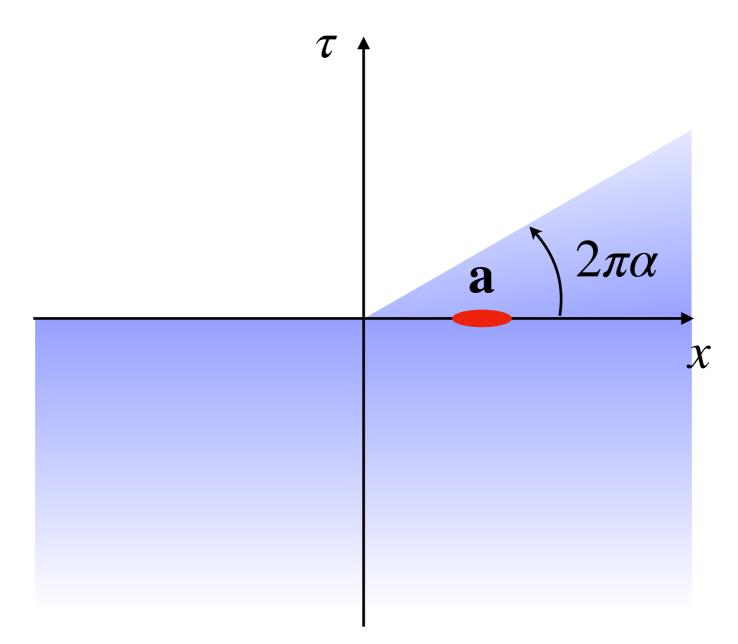
II. Path integral approach



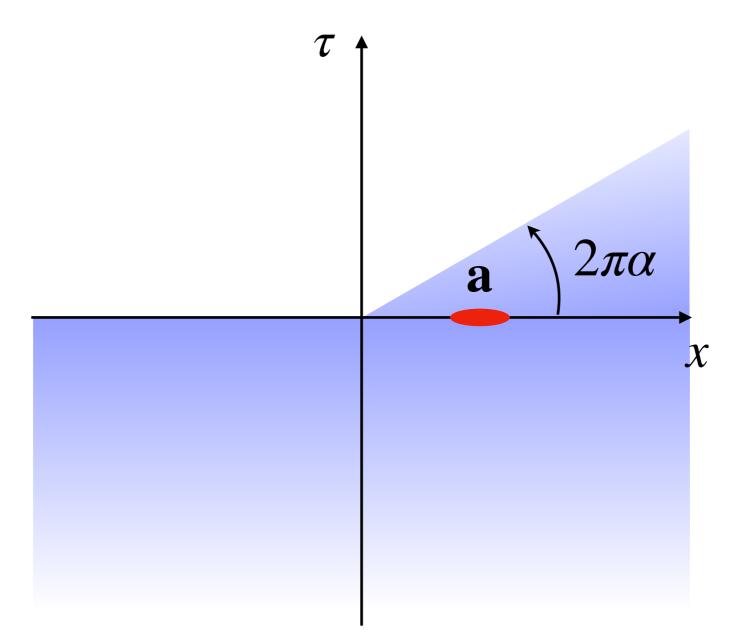
II. Path integral approach



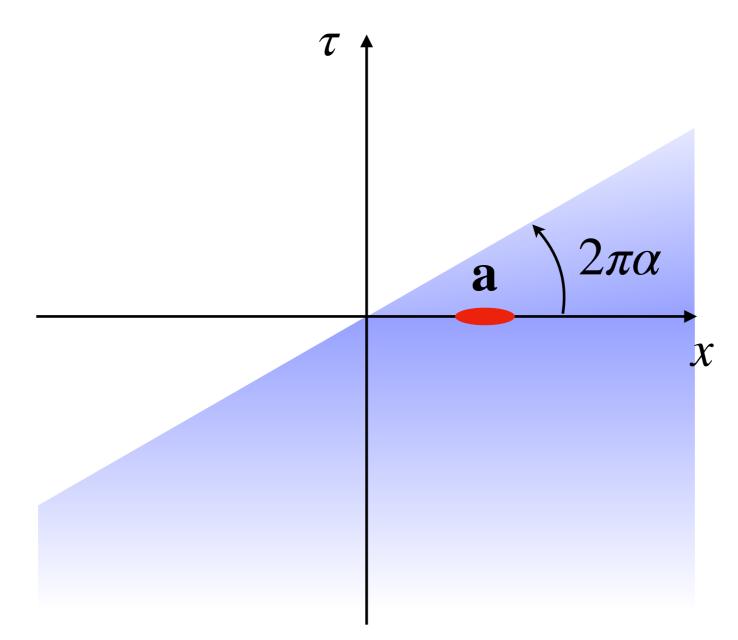
II. Path integral approach



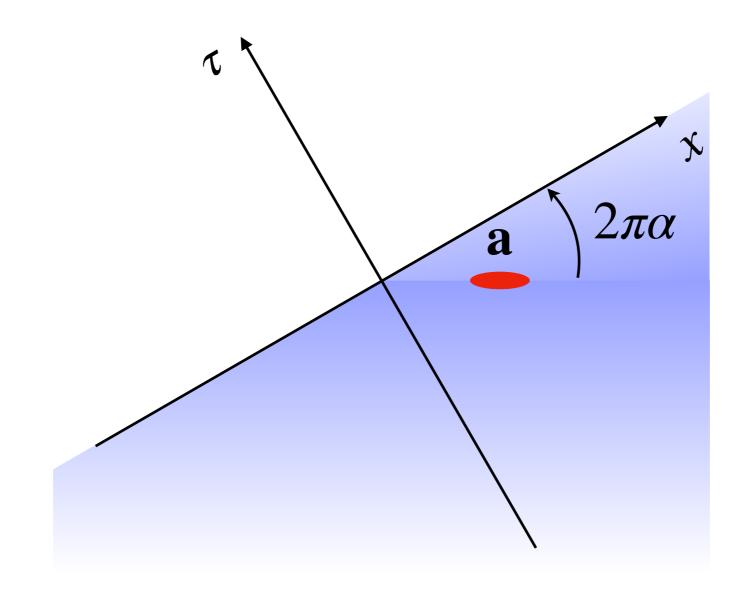
II. Path integral approach



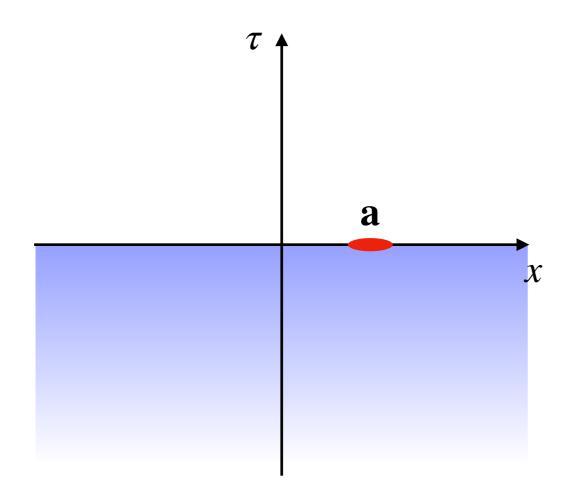
II. Path integral approach



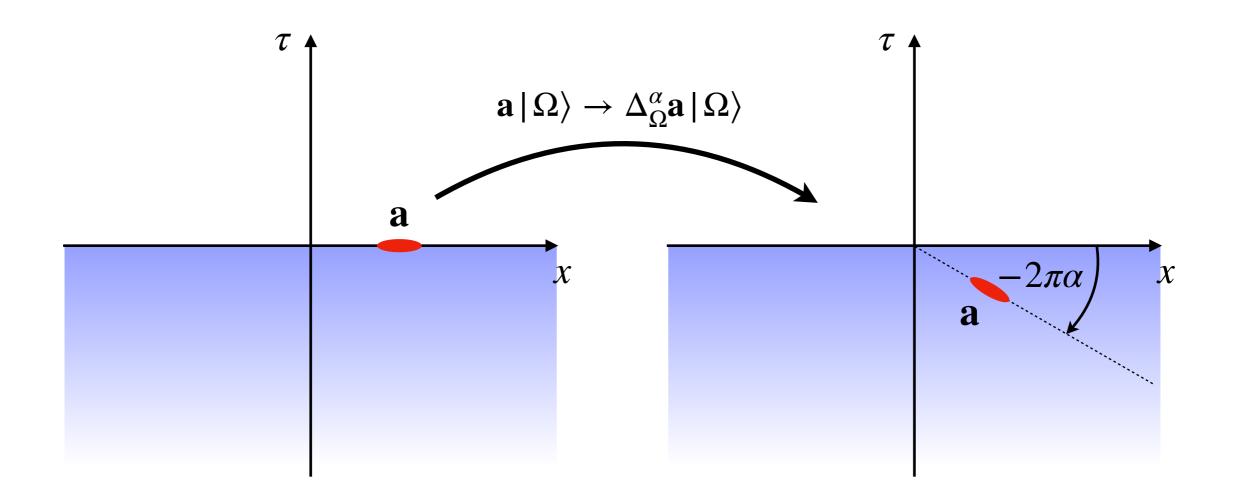
II. Path integral approach



II. Path integral approach

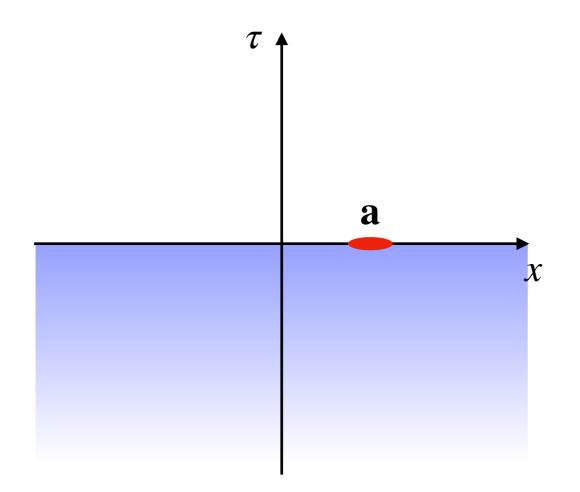


II. Path integral approach



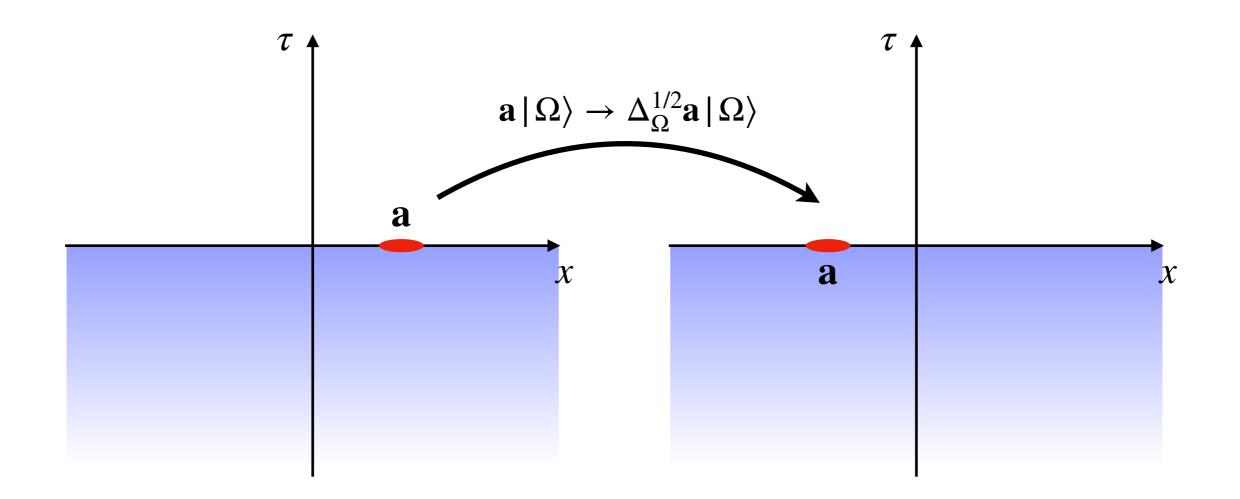
II. Path integral approach

• If $\alpha = 1/2$, one has $\Delta_{\Omega}^{\alpha} \mathbf{a} | \Omega \rangle = \exp(\pi K_{\ell}) \exp(-\pi K_{r}) \mathbf{a} | \Omega \rangle$



II. Path integral approach

• If $\alpha = 1/2$, one has $\Delta_{\Omega}^{\alpha} \mathbf{a} | \Omega \rangle = \exp(\pi K_{\ell}) \exp(-\pi K_{r}) \mathbf{a} | \Omega \rangle$



- If $\alpha = 1/2$, one has $\Delta_{\Omega}^{1/2} \mathbf{a} | \Omega \rangle = \exp(\pi K_{\ell}) \exp(-\pi K_{r}) \mathbf{a} | \Omega \rangle$
- So $\tilde{\mathbf{a}} = \Delta_{\Omega}^{1/2} \mathbf{a}$ is a local operator in \mathfrak{A}_{ℓ} .
- One can not go to the region $\alpha > 1/2$, otherwise the operator **a** will be removed from the path integral.
- So Δ_{Ω}^{iz} is holomorphic in $-1/2 < \text{Im}_z < 0$ and continuous on the boundary of this strip.

II. Path integral approach

• Now we determine the modular conjugation operator J_{Ω} .

$$S_{\Omega} = J_{\Omega} \Delta_{\Omega}^{1/2}$$

$$\mathbf{a}^{\dagger} | \Omega \rangle = S_{\Omega} \mathbf{a} | \Omega \rangle = J_{\Omega} \Delta_{\Omega}^{1/2} \mathbf{a} | \Omega \rangle = J_{\Omega} \tilde{\mathbf{a}} | \Omega \rangle$$

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- It suffices to check $S_{\Omega}\varphi(0,x,\mathbf{y}) | \Omega \rangle$ and $S_{\Omega}\dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle$.

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because they are Hermitian field, whose conjugation are themselves

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because they are Hermitian field, whose conjugation are themselves

$$S_{\Omega}\varphi(0,x,\mathbf{y}) | \Omega \rangle = \varphi(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \varphi(0,x,\mathbf{y}) | \Omega \rangle$$

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because they are Hermitian field, whose conjugation are themselves

$$S_{\Omega}\varphi(0,x,\mathbf{y}) | \Omega \rangle = \varphi(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \varphi(0,x,\mathbf{y}) | \Omega \rangle$$
$$S_{\Omega}\dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle$$

II. Path integral approach

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because they are Hermitian field, whose conjugation are themselves

$$S_{\Omega}\varphi(0,x,\mathbf{y}) | \Omega \rangle = \varphi(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \varphi(0,x,\mathbf{y}) | \Omega \rangle$$
$$S_{\Omega}\dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle$$

II. Path integral approach

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because they are Hermitian field, whose conjugation are themselves

$$S_{\Omega}\varphi(0,x,\mathbf{y}) | \Omega \rangle = \varphi(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \varphi(0,x,\mathbf{y}) | \Omega \rangle$$
$$S_{\Omega}\dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle$$

$$\Delta_{\Omega}^{1/2}\varphi(0,x,\mathbf{y}) \,|\, \Omega\rangle = \varphi(0,-x,\mathbf{y}) \,|\, \Omega\rangle$$

II. Path integral approach

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because they are Hermitian field, whose conjugation are themselves

$$S_{\Omega}\varphi(0,x,\mathbf{y}) | \Omega \rangle = \varphi(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \varphi(0,x,\mathbf{y}) | \Omega \rangle$$
$$S_{\Omega}\dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle$$

$$\Delta_{\Omega}^{1/2} \varphi(0, x, \mathbf{y}) | \Omega \rangle = \varphi(0, -x, \mathbf{y}) | \Omega \rangle$$
$$\Delta_{\Omega}^{1/2} \dot{\varphi}(0, x, \mathbf{y}) | \Omega \rangle = - \dot{\varphi}(0, -x, \mathbf{y}) | \Omega \rangle$$

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because they are Hermitian field, whose conjugation are themselves

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because they are Hermitian field, whose conjugation are themselves

$$S_{\Omega}\varphi(0,x,\mathbf{y}) | \Omega \rangle = \varphi(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \varphi(0,x,\mathbf{y}) | \Omega \rangle$$

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because they are Hermitian field, whose conjugation are themselves

$$S_{\Omega}\varphi(0,x,\mathbf{y}) | \Omega \rangle = \varphi(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \varphi(0,x,\mathbf{y}) | \Omega \rangle$$
$$S_{\Omega}\dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle$$

II. Path integral approach

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because they are Hermitian field, whose conjugation are themselves

$$S_{\Omega}\varphi(0,x,\mathbf{y}) | \Omega \rangle = \varphi(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \varphi(0,x,\mathbf{y}) | \Omega \rangle$$
$$S_{\Omega}\dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle$$

II. Path integral approach

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because they are Hermitian field, whose conjugation are themselves

$$S_{\Omega}\varphi(0,x,\mathbf{y}) | \Omega \rangle = \varphi(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \varphi(0,x,\mathbf{y}) | \Omega \rangle$$
$$S_{\Omega}\dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle$$

$$\Delta_{\Omega}^{1/2}\varphi(0,x,\mathbf{y}) \,|\, \Omega\rangle = \varphi(0,-x,\mathbf{y}) \,|\, \Omega\rangle$$

II. Path integral approach

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because they are Hermitian field, whose conjugation are themselves

$$S_{\Omega}\varphi(0,x,\mathbf{y}) | \Omega \rangle = \varphi(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \varphi(0,x,\mathbf{y}) | \Omega \rangle$$
$$S_{\Omega}\dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle$$

$$\Delta_{\Omega}^{1/2} \varphi(0, x, \mathbf{y}) | \Omega \rangle = \varphi(0, -x, \mathbf{y}) | \Omega \rangle$$
$$\Delta_{\Omega}^{1/2} \dot{\varphi}(0, x, \mathbf{y}) | \Omega \rangle = - \dot{\varphi}(0, -x, \mathbf{y}) | \Omega \rangle$$

II. Path integral approach

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because they are Hermitian field, whose conjugation are themselves

$$S_{\Omega}\varphi(0,x,\mathbf{y}) | \Omega \rangle = \varphi(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \varphi(0,x,\mathbf{y}) | \Omega \rangle$$
$$S_{\Omega}\dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y})^{\dagger} | \Omega \rangle = \dot{\varphi}(0,x,\mathbf{y}) | \Omega \rangle$$

• We have already known that

$$\Delta_{\Omega}^{1/2} \varphi(0, x, \mathbf{y}) | \Omega \rangle = \varphi(0, -x, \mathbf{y}) | \Omega \rangle$$
$$\Delta_{\Omega}^{1/2} \dot{\varphi}(0, x, \mathbf{y}) | \Omega \rangle = - \dot{\varphi}(0, -x, \mathbf{y}) | \Omega \rangle$$

• There is a typo in Eq. (5.13) in the original paper.

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because $S_{\Omega} = J_{\Omega} \Delta_{\Omega}^{1/2}$, one has

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because $S_{\Omega} = J_{\Omega} \Delta_{\Omega}^{1/2}$, one has

$$J_{\Omega}\varphi(0,x,\mathbf{y})J_{\Omega}^{-1} = \varphi(0,-x,\mathbf{y})$$

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because $S_{\Omega} = J_{\Omega} \Delta_{\Omega}^{1/2}$, one has

$$J_{\Omega}\varphi(0,x,\mathbf{y})J_{\Omega}^{-1} = \varphi(0,-x,\mathbf{y})$$
$$J_{\Omega}\dot{\varphi}(0,x,\mathbf{y})J_{\Omega}^{-1} = -\dot{\varphi}(0,-x,\mathbf{y})$$

- For simplicity, we consider a QFT of single Hermitian scalar field $\varphi(t, x, y)$.
- Because $S_{\Omega} = J_{\Omega} \Delta_{\Omega}^{1/2}$, one has

$$J_{\Omega}\varphi(0,x,\mathbf{y})J_{\Omega}^{-1} = \varphi(0,-x,\mathbf{y})$$
$$J_{\Omega}\dot{\varphi}(0,x,\mathbf{y})J_{\Omega}^{-1} = -\dot{\varphi}(0,-x,\mathbf{y})$$

- This result means J_{Ω} : $t \to -t, x \to -x, y \to y$
- So the modular conjugation operator is just the CR_xT transformation.

$$J_{\Omega} = CRT$$

II. Path integral approach

• Why *CRT* but not *RT*?

- Why *CRT* but not *RT*?
- Suppose we have two Hermitian scalar fields and there is an SO(2) (U(1)) conservation charge $Q = \int dx d^{D-2} \mathbf{y}(\varphi_1 \dot{\varphi}_2 \varphi_2 \dot{\varphi}_1)$, the modular conjugation J_{Ω} maps the conservation charge to

- Why *CRT* but not *RT*?
- Suppose we have two Hermitian scalar fields and there is an SO(2) (U(1)) conservation charge $Q = \int dx d^{D-2} \mathbf{y}(\varphi_1 \dot{\varphi}_2 \varphi_2 \dot{\varphi}_1)$, the modular conjugation J_{Ω} maps the conservation charge to

$$J_{\Omega}QJ_{\Omega}^{-1} = -Q$$

II. Path integral approach

- Why *CRT* but not *RT*?
- Suppose we have two Hermitian scalar fields and there is an SO(2) (U(1)) conservation charge $Q = \int dx d^{D-2} \mathbf{y}(\varphi_1 \dot{\varphi}_2 \varphi_2 \dot{\varphi}_1)$, the modular conjugation J_{Ω} maps the conservation charge to

$$J_{\Omega}QJ_{\Omega}^{-1} = -Q$$

• The *CRT* is a universal symmetry of relativistic quantum field theory, while there is no symmetry corresponding to *RT*.

- We verify the deeper properties of the modular operator Δ_{Ω} and the modular conjugation J_{Ω} explicitly:
 - Δ_{Ω}^{is} : Lorentz boost with real boost factor $2\pi s$;
 - $\Delta_{\Omega}^{is}: \ \mathfrak{A}_{\ell} \to \mathfrak{A}_{\ell} \text{ and } \Delta_{\Omega}^{is}: \ \mathfrak{A}_{r} \to \mathfrak{A}_{r} \text{ are automorphisms};$
 - $J_{\Omega} = CRT$ and J_{Ω} : $\mathfrak{A}_{\ell} \leftrightarrow \mathfrak{A}_{r}$ exchanges the two wedge algebras.

II. Path integral approach

- We verify the deeper properties of the modular operator Δ_{Ω} and the modular conjugation J_{Ω} explicitly:
 - Δ_{Ω}^{is} : Lorentz boost with real boost factor $2\pi s$;
 - $\Delta_{\Omega}^{is}: \mathfrak{A}_{\ell} \to \mathfrak{A}_{\ell}$ and $\Delta_{\Omega}^{is}: \mathfrak{A}_{r} \to \mathfrak{A}_{r}$ are automorphisms;
 - $J_{\Omega} = CRT$ and J_{Ω} : $\mathfrak{A}_{\ell} \leftrightarrow \mathfrak{A}_{r}$ exchanges the two wedge algebras.
- In Takesaki-Tomita theory, the modular conjugation J_Ω exchanges the algebra with its commutant , so

$$\mathfrak{A}'_{\ell} = \mathfrak{A}_{r}, \qquad \mathfrak{A}'_{r} = \mathfrak{A}_{\ell}$$

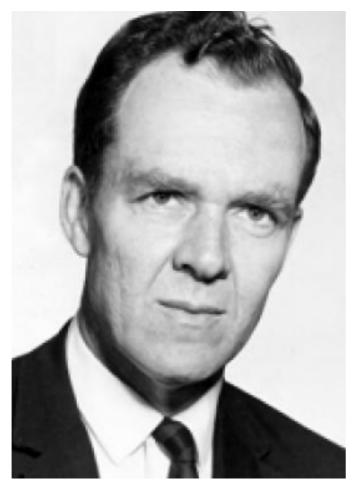
Thus the Haag duality for complementary Rindler spacetime is proved.

III. The approach of Bisognano and Wichmann

- The path integral method is extremely illustrating and gives the right result, but it is not rigorous.
- The Hilbert space of quantum field theory can not be factorized as $\mathcal{H}_\ell \otimes \mathcal{H}_r!$
- In the rigorous proof (Bisognano and Wichmann, <u>1975</u>, <u>1976</u>), one uses holomorphy.

III. The approach of Bisognano and Wichmann

• In the rigorous proof, one uses holomorphy.



Arthur Strong Wightman (1922/05/30-2013/01/13)

Raymond Frederick "Ray" Streater (1936/04/21-)

III. The approach of Bisognano and Wichmann

 We list the main result here without proof (for detail, see "<u>PCT</u>, <u>Spin and Statistics, and All That</u>" or its Chinese translation)

III. The approach of Bisognano and Wichmann

- We list the main result here without proof (for detail, see "<u>PCT,</u> <u>Spin and Statistics, and All That</u>" or its Chinese translation)
- Denote the vacuum expectation values (Wightman functions) by $\mathscr{W}(x_1, x_2, \dots, x_n) = \langle \Omega | \varphi_1(x_1)\varphi_2(x_2)\cdots\varphi_n(x_n) | \Omega \rangle$. By translation symmetry, one has $\mathscr{W}(x_1, x_2, \dots, x_n) = W(\xi_1, \xi_2, \dots, \xi_{n-1})$, where $\xi_j = x_j x_{j+1}$. Then there exist (the domain of holomorphy being $\eta_j \in \mathbf{V}_+$) holomorphic function $\mathbf{W}(\xi_1 i\eta_1, \dots, \xi_{n-1} i\eta_{n-1})$, such that

III. The approach of Bisognano and Wichmann

- We list the main result here without proof (for detail, see "<u>PCT</u>, <u>Spin and Statistics, and All That</u>" or its Chinese translation)
- Denote the vacuum expectation values (Wightman functions) by $\mathscr{W}(x_1, x_2, \dots, x_n) = \langle \Omega | \varphi_1(x_1)\varphi_2(x_2)\cdots\varphi_n(x_n) | \Omega \rangle$. By translation symmetry, one has $\mathscr{W}(x_1, x_2, \dots, x_n) = W(\xi_1, \xi_2, \dots, \xi_{n-1})$, where $\xi_j = x_j x_{j+1}$. Then there exist (the domain of holomorphy being $\eta_j \in \mathbf{V}_+$) holomorphic function $\mathbf{W}(\xi_1 i\eta_1, \dots, \xi_{n-1} i\eta_{n-1})$, such that

$$W(\xi_1, \dots, \xi_{n-1}) = \lim_{\eta_1, \dots, \eta_{n-1} \to 0^+} \mathbf{W}(\xi_1 - i\eta_1, \dots, \xi_{n-1} - i\eta_{n-1})$$

III. The approach of Bisognano and Wichmann

Since J_Ω = CRT certainly acts as J_Ωφ(0,x, y)J_Ω⁻¹ = φ(0, - x, y) and J_Ωφ(0,x, y)J_Ω⁻¹ = -φ(0, - x, y), to determine Δ_Ω and S_Ω, one has to justify the claim that for a ∈ 𝔄_r

$$\exp(-2\pi K)\mathbf{a} \,|\, \Omega \rangle = \tilde{\mathbf{a}} \,|\, \Omega \rangle$$

• Here $\tilde{\mathbf{a}}$ is obtained from \mathbf{a} by $(t, x, \mathbf{y}) \rightarrow (-t, -x, \mathbf{y})$.

III. The approach of Bisognano and Wichmann

Since J_Ω = CRT certainly acts as J_Ωφ(0,x, y)J_Ω⁻¹ = φ(0, - x, y) and J_Ωφ(0,x, y)J_Ω⁻¹ = -φ(0, - x, y), to determine Δ_Ω and S_Ω, one has to justify the claim that for a ∈ 𝔄_r

$$\exp(-2\pi K)\mathbf{a} \,|\, \Omega\rangle = \tilde{\mathbf{a}} \,|\, \Omega\rangle$$

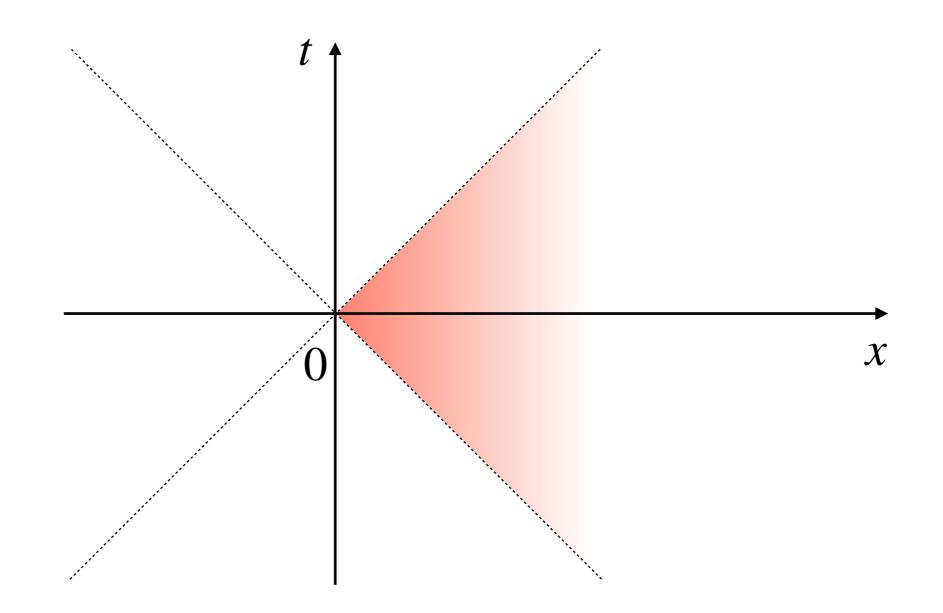
- Here $\tilde{\mathbf{a}}$ is obtained from \mathbf{a} by $(t, x, \mathbf{y}) \rightarrow (-t, -x, \mathbf{y})$.
- We check it for $\mathbf{a} = \varphi(t_1, x_1, \mathbf{y}_1)\varphi(t_2, x_2, \mathbf{y}_2)\cdots\varphi(t_n, x_n, \mathbf{y}_n)$, where the points $p_1 = (t_1, x_1, \mathbf{y}_1), p_2 = (t_2, x_2, \mathbf{y}_2), \cdots, p_n = (t_n, x_n, \mathbf{y}_n)$ are all in the right wedge \mathcal{U}_r .
- So we have $x_j > |t_j|$.

III. The approach of Bisognano and Wichmann

- We can take p_i to be spacelike separated from each other.
- Then the field operators commute, we can order them so that $x_j \ge x_i$ for j > i.
- Even more specially, we can restrict to $x_j x_i > |t_j t_i|$ for j > i.
- The states $a | \Omega \rangle$ with a of this type are dense in \mathcal{H} . (The proof is similar to that for Reeh-Schlieder theorem.)

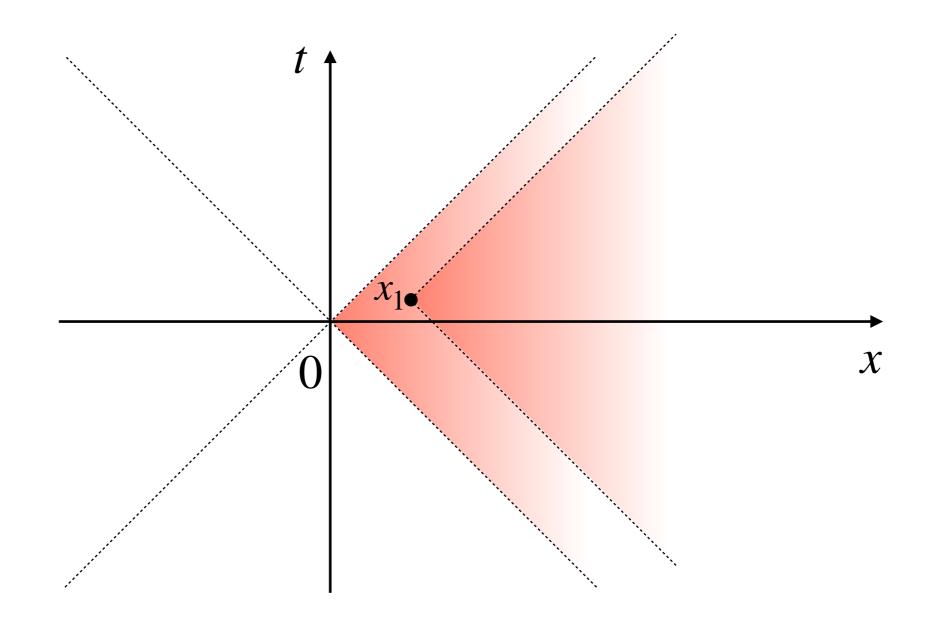
III. The approach of Bisognano and Wichmann

• We restrict to $x_j - x_i > |t_j - t_i|$ for j > i.



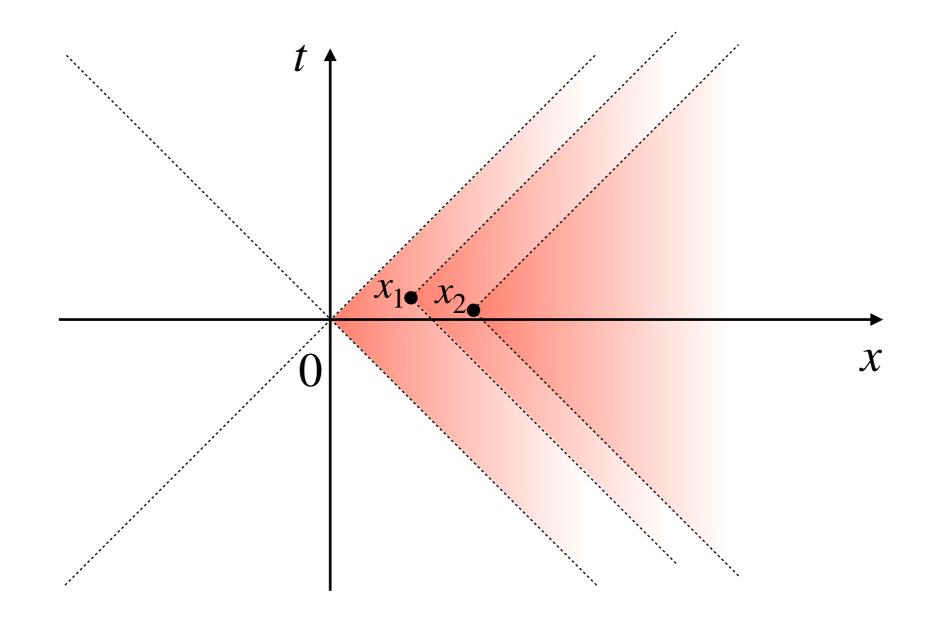
III. The approach of Bisognano and Wichmann

• We restrict to $x_j - x_i > |t_j - t_i|$ for j > i.



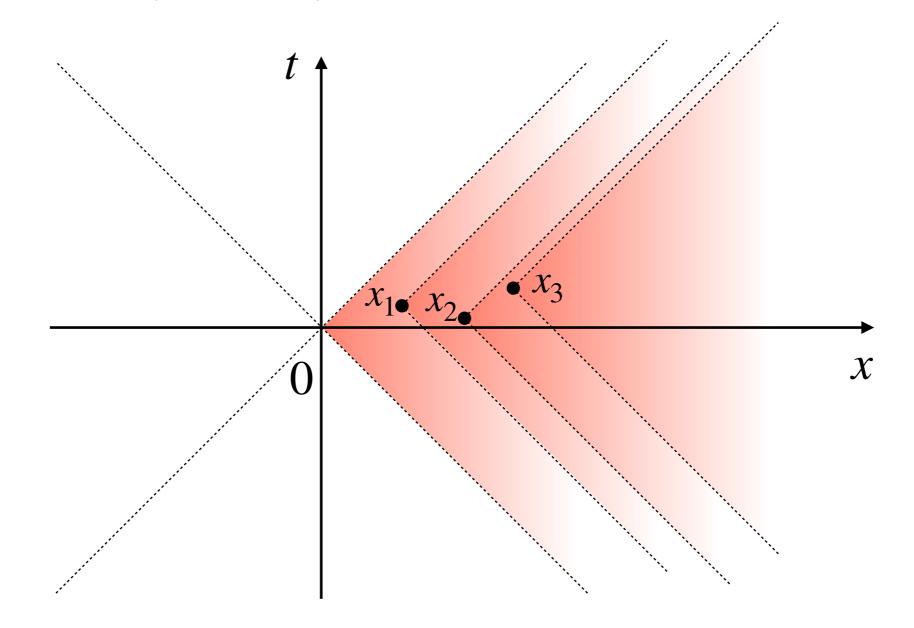
III. The approach of Bisognano and Wichmann

• We restrict to $x_j - x_i > |t_j - t_i|$ for j > i.



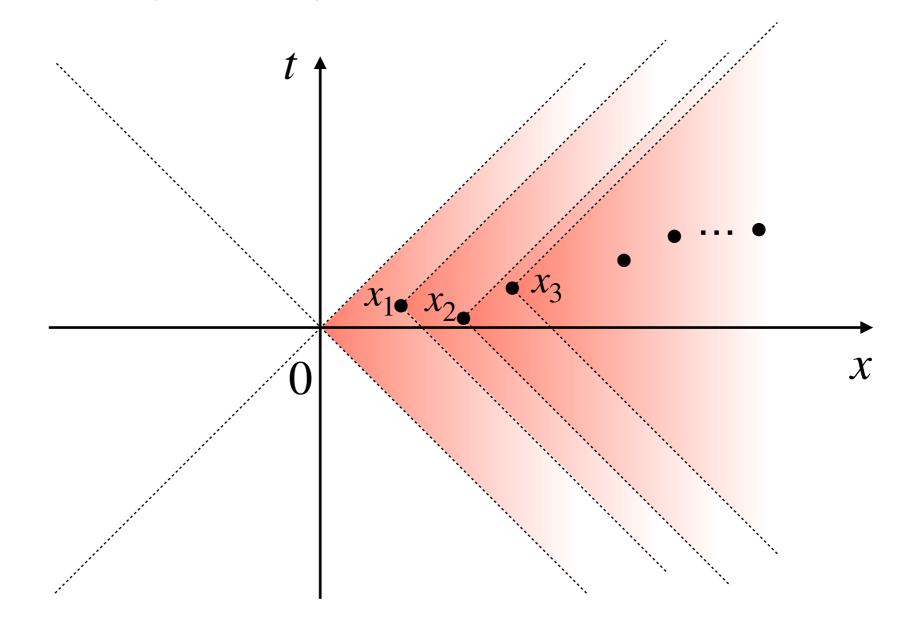
III. The approach of Bisognano and Wichmann

• We restrict to $x_j - x_i > |t_j - t_i|$ for j > i.



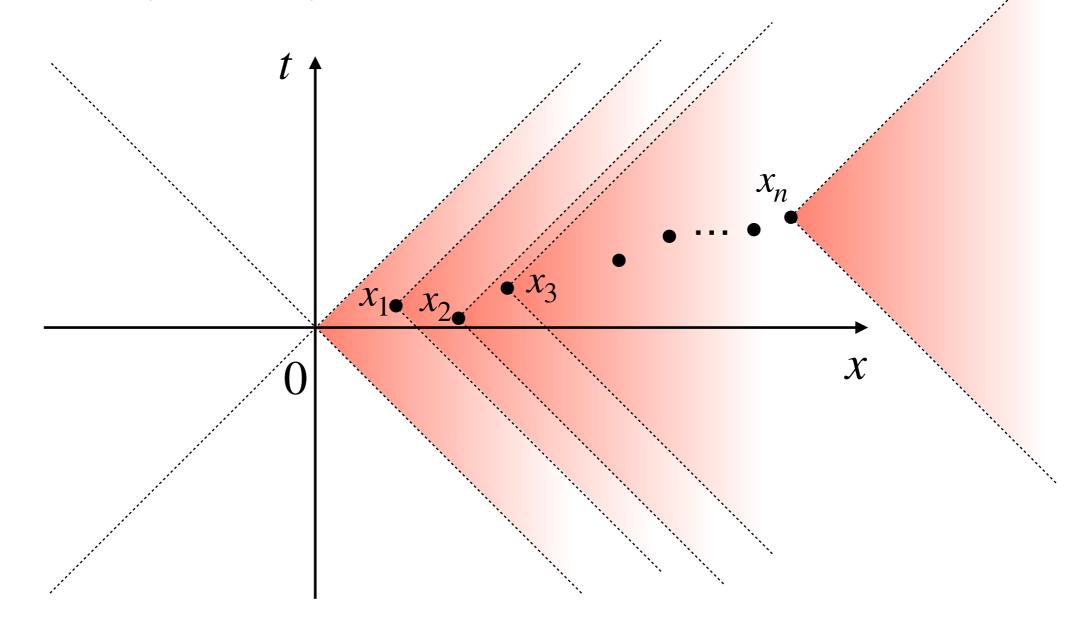
III. The approach of Bisognano and Wichmann

• We restrict to $x_j - x_i > |t_j - t_i|$ for j > i.



III. The approach of Bisognano and Wichmann

• We restrict to $x_j - x_i > |t_j - t_i|$ for j > i.



III. The approach of Bisognano and Wichmann

- We first check the Lorentz boost $exp(-2\pi i s K)$ with real boost factor *s*.
- It is a unitary transformation on any state $\mathbf{a} | \Omega \rangle$.
- Because it is a Poincare transformation, its action is given by $\exp(2\pi i\eta K)\varphi(\mathbf{x})\exp(-2\pi i\eta K)=\varphi(\mathbf{x}(\eta))$
- The $\mathbf{x}(\boldsymbol{\eta})$ is the Lorentz transformation of the spacetime coordinate

$$\mathbf{x}(\eta) = \begin{pmatrix} t(\eta) \\ x(\eta) \end{pmatrix} = \begin{pmatrix} \cosh(2\pi\eta) & \sinh(2\pi\eta) \\ \sinh(2\pi\eta) & \cosh(2\pi\eta) \end{pmatrix} \begin{pmatrix} t \\ x \end{pmatrix}$$

III. The approach of Bisognano and Wichmann

• Because the vacuum is invariant under Poincare transformation, we have $K|\Omega\rangle = 0$.

 $\exp(2\pi i\eta K)\mathbf{a} \,|\, \Omega \rangle = \exp(2\pi i\eta K)\varphi(\mathbf{x}_1)\varphi(\mathbf{x}_2)\cdots\varphi(\mathbf{x}_n) \,|\, \Omega \rangle$

 $= \exp(2\pi i\eta K)\varphi(\mathbf{x}_{1})\exp(-2\pi i\eta K) \exp(2\pi i\eta K)\varphi(\mathbf{x}_{2})\exp(-2\pi i\eta K)\cdots$ $\cdots \exp(2\pi i\eta K)\varphi(\mathbf{x}_{n})\exp(-2\pi i\eta K)\exp(2\pi i\eta K)|\Omega\rangle$

 $= \varphi(\mathbf{x}_{1}(\eta))\varphi(\mathbf{x}_{2}(\eta))\cdots\varphi(\mathbf{x}_{n}(\eta)) \,|\, \Omega \rangle$

• We want to analytically continue this formula in η to $\eta = i/2$ because

$$\mathbf{x}(i/2) = \begin{pmatrix} \cosh(i\pi) & \sinh(i\pi) \\ \sinh(i\pi) & \cosh(i\pi) \end{pmatrix} \begin{pmatrix} t \\ x \end{pmatrix} = -\mathbf{x}$$

III. The approach of Bisognano and Wichmann

• We want to analytically continue this formula in η to $\eta = i/2$ because

$$\mathbf{x}(i/2) = \begin{pmatrix} \cosh(i\pi) & \sinh(i\pi) \\ \sinh(i\pi) & \cosh(i\pi) \end{pmatrix} \begin{pmatrix} t \\ x \end{pmatrix} = -\mathbf{x}$$

 So we need to show that when 0 < Imη < 1/2 the imaginary part of x_{j+1} - x_j is future timelike.

III. The approach of Bisognano and Wichmann

• For $\eta = a + ib$,

 $\cosh(2\pi(a+ib)) = \cos(2\pi b)\cosh(2\pi a) + i\sin(2\pi b)\sinh(2\pi a)$ $\sinh(2\pi(a+ib)) = \cos(2\pi b)\sinh(2\pi a) + i\sin(2\pi b)\cosh(2\pi a)$

 $\mathbf{x}(a+ib) = \begin{pmatrix} \cos(2\pi b)\cosh(2\pi a) + i\sin(2\pi b)\sinh(2\pi a) & \cos(2\pi b)\sinh(2\pi a) + i\sin(2\pi b)\cosh(2\pi a) \\ \cos(2\pi b)\sinh(2\pi a) + i\sin(2\pi b)\cosh(2\pi a) & \cos(2\pi b)\cosh(2\pi a) + i\sin(2\pi b)\sinh(2\pi a) \end{pmatrix} \begin{pmatrix} t \\ x \end{pmatrix}$ $= \begin{pmatrix} \cos(2\pi b)[t\cosh(2\pi a) + x\sinh(2\pi a)] + i\sin(2\pi b)[t\sinh(2\pi a) + x\cosh(2\pi a)] \\ \cos(2\pi b)[t\sinh(2\pi a) + x\cosh(2\pi a)] + i\sin(2\pi b)[t\cosh(2\pi a) + x\sinh(2\pi a)] \end{pmatrix}$ $= \cos(2\pi b) \begin{pmatrix} t\cosh(2\pi a) + x\sinh(2\pi a) \\ t\sinh(2\pi a) + x\cosh(2\pi a) \end{pmatrix} + i\sin(2\pi b) \begin{pmatrix} t\sinh(2\pi a) + x\cosh(2\pi a) \\ t\cosh(2\pi a) + x\sinh(2\pi a) \end{pmatrix}$

$$\therefore \operatorname{Im}(\mathbf{x}_{j+1}(a+ib) - \mathbf{x}_{j}(a+ib)) = \sin(2\pi b) \begin{pmatrix} \sinh(2\pi a) & \cosh(2\pi a) \\ \cosh(2\pi a) & \sinh(2\pi a) \end{pmatrix} \begin{pmatrix} t_{j+1} - t_{j} \\ x_{j+1} - x_{j} \end{pmatrix}$$

$$\therefore |\mathbf{Im}(\mathbf{x}_{j+1}(a+ib) - \mathbf{x}_{j}(a+ib))| = \sin^{2}(2\pi b)[\cosh^{2}(2\pi a) - \sinh^{2}(2\pi a)][(x_{j+1} - x_{j})^{2} - (t_{j+1} - t_{j})^{2}]$$
$$= \sin^{2}(2\pi b)[(x_{j+1} - x_{j})^{2} - (t_{j+1} - t_{j})^{2}] > 0$$

III. The approach of Bisognano and Wichmann

- Because the imaginary part of the coordinates are 0, we have proved that for η = a + ib and 0 < Imη < 1/2, Im(x_{j+1} x_j) is timelike.
- Because 0 < b < 1/2 and $x_{j+1} x_j > |t_{j+1} t_j|$, the time component of $Im(x_{j+1} x_j)$ is

 $\sin(2\pi b)[(x_{j+1} - x_j)\cosh(2\pi a) + (t_{j+1} - t_j)\sinh(2\pi a)] > 0$

III. The approach of Bisognano and Wichmann

- Because the imaginary part of the coordinates are 0, we have proved that for η = a + ib and 0 < Imη < 1/2, Im(x_{j+1} x_j) is timelike.
- Because 0 < b < 1/2 and $x_{j+1} x_j > |t_{j+1} t_j|$, the time component of $Im(x_{j+1} x_j)$ is

 $\sin(2\pi b)[(x_{j+1} - x_j)\cosh(2\pi a) + (t_{j+1} - t_j)\sinh(2\pi a)] > 0$

- So $\varphi(\mathbf{x}_1(\eta))\varphi(\mathbf{x}_2(\eta))\cdots\varphi(\mathbf{x}_n(\eta)) | \Omega \rangle$ is holomorphic for $0 < \mathbf{Im}\eta < 1/2$ and continuous up to the boundary at $\mathbf{Im}\eta = 1/2$.
- Then we have $\exp(-2\pi K)\mathbf{a} |\Omega\rangle = \tilde{\mathbf{a}} |\Omega\rangle$, which finishes the proof.

IV. An accelerating observer

• Unruh's question: what is seen by an observer undergoing constant acceleration in Minkowski spacetime?

William George "Bill" Unruh (1945/08/28-)

IV. An accelerating observer

IV. An accelerating observer

 Unruh's question: what is seen by an observer undergoing constant acceleration in Minkowski spacetime?

 $\because 0 = U^a \nabla_a (U_b U^b) = U^a U^b \nabla_a U_b + U^a U_b \nabla_a U^b = 2U_b (U^a \nabla_a U^b)$

IV. An accelerating observer

 Unruh's question: what is seen by an observer undergoing constant acceleration in Minkowski spacetime?

$$\because 0 = U^a \nabla_a (U_b U^b) = U^a U^b \nabla_a U_b + U^a U_b \nabla_a U^b = 2U_b (U^a \nabla_a U^b)$$

 $\therefore \ U^a \nabla_a U^b \perp U^a$

IV. An accelerating observer

$$\because 0 = U^a \nabla_a (U_b U^b) = U^a U^b \nabla_a U_b + U^a U_b \nabla_a U^b = 2U_b (U^a \nabla_a U^b)$$

$$\therefore \quad U^a \nabla_a U^b \perp U^a$$
$$U^a = \left(U^0, U^1, 0, \dots, 0 \right), \quad U^a \nabla_a U^b = \left(\frac{dU^0}{d\tau}, \frac{dU^1}{d\tau}, 0, \dots, 0 \right)$$

IV. An accelerating observer

$$\because 0 = U^a \nabla_a (U_b U^b) = U^a U^b \nabla_a U_b + U^a U_b \nabla_a U^b = 2U_b (U^a \nabla_a U^b)$$

$$\therefore U^{a} \nabla_{a} U^{b} \perp U^{a}$$

$$U^{a} = \left(U^{0}, U^{1}, 0, \dots, 0\right), \quad U^{a} \nabla_{a} U^{b} = \left(\frac{dU^{0}}{d\tau}, \frac{dU^{1}}{d\tau}, 0, \dots, 0\right)$$

$$\therefore \left(\frac{dU^{0}}{d\tau}, \frac{dU^{1}}{d\tau}, 0, \dots, 0\right) = \frac{1}{R} \left(U^{1}, U^{0}, 0, \dots, 0\right)$$

IV. An accelerating observer

$$\because 0 = U^a \nabla_a (U_b U^b) = U^a U^b \nabla_a U_b + U^a U_b \nabla_a U^b = 2U_b (U^a \nabla_a U^b)$$

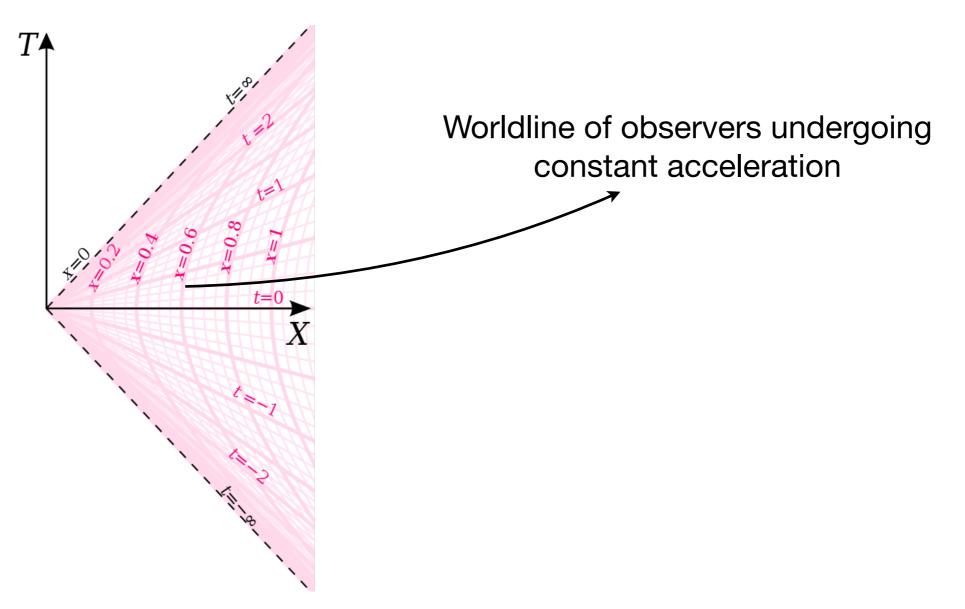
$$\therefore \quad U^{a} \nabla_{a} U^{b} \perp U^{a}$$

$$U^{a} = \left(U^{0}, U^{1}, 0, \dots, 0\right), \quad U^{a} \nabla_{a} U^{b} = \left(\frac{dU^{0}}{d\tau}, \frac{dU^{1}}{d\tau}, 0, \dots, 0\right)$$

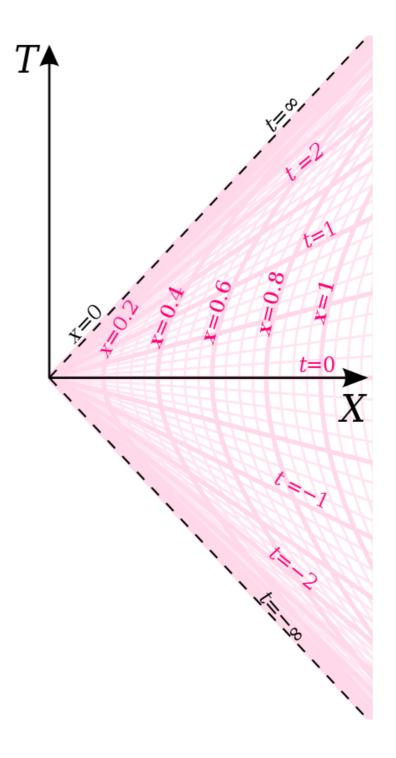
$$\therefore \quad \left(\frac{dU^{0}}{d\tau}, \frac{dU^{1}}{d\tau}, 0, \dots, 0\right) = \frac{1}{R} \left(U^{1}, U^{0}, 0, \dots, 0\right)$$

$$\Rightarrow \begin{cases} U^0(\tau) = \cosh(\tau/R) \\ U^1(\tau) = \sinh(\tau/R) \end{cases} \Rightarrow \begin{cases} T(\tau) = R \sinh(\tau/R) \\ X(\tau) = R \cosh(\tau/R) \end{cases}$$

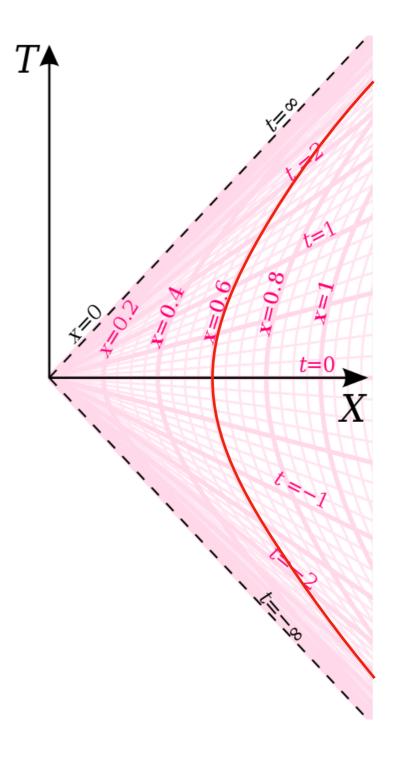
IV. An accelerating observer



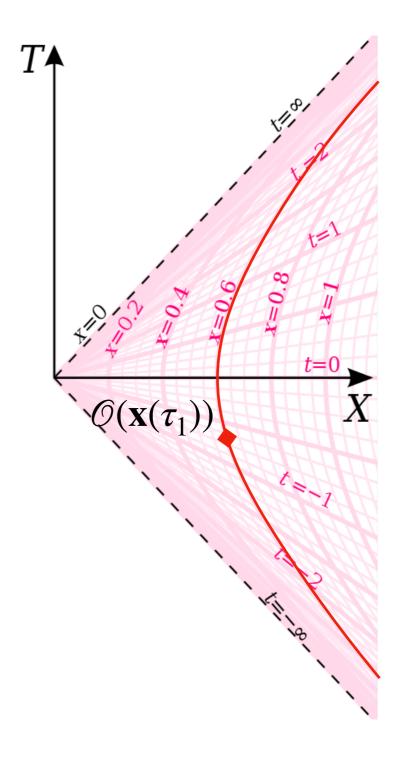
- The observer can probe the vacuum |Ω) by measuring a local operator Ø and its adjoint Ø[†] along its worldline.
- For simplicity, we consider the twopoint functions $\mathcal{O} \cdot \mathcal{O}^{\dagger}$ with different orders $\langle \Omega | \mathcal{O}(\mathbf{x}(\tau_1)) \mathcal{O}^{\dagger}(\mathbf{x}(\tau_2)) | \Omega \rangle$ and $\langle \Omega | \mathcal{O}^{\dagger}(\mathbf{x}(\tau_2)) \mathcal{O}(\mathbf{x}(\tau_1)) | \Omega \rangle$.



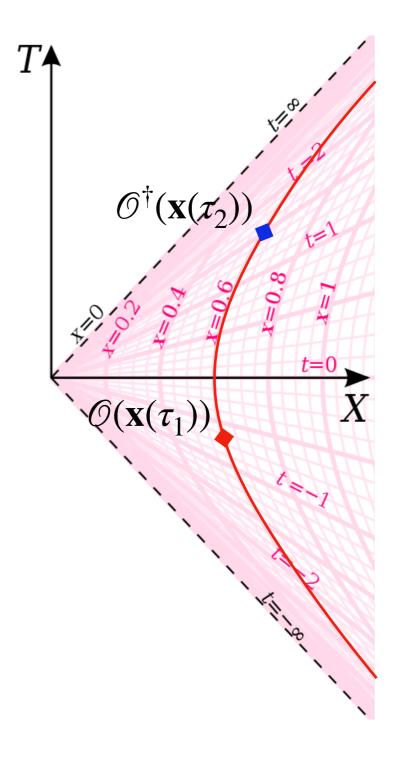
- The observer can probe the vacuum |Ω) by measuring a local operator Ø and its adjoint Ø[†] along its worldline.
- For simplicity, we consider the twopoint functions $\mathcal{O} \cdot \mathcal{O}^{\dagger}$ with different orders $\langle \Omega | \mathcal{O}(\mathbf{x}(\tau_1)) \mathcal{O}^{\dagger}(\mathbf{x}(\tau_2)) | \Omega \rangle$ and $\langle \Omega | \mathcal{O}^{\dagger}(\mathbf{x}(\tau_2)) \mathcal{O}(\mathbf{x}(\tau_1)) | \Omega \rangle$.



- The observer can probe the vacuum |Ω) by measuring a local operator Ø and its adjoint Ø[†] along its worldline.
- For simplicity, we consider the twopoint functions $\mathcal{O} \cdot \mathcal{O}^{\dagger}$ with different orders $\langle \Omega | \mathcal{O}(\mathbf{x}(\tau_1)) \mathcal{O}^{\dagger}(\mathbf{x}(\tau_2)) | \Omega \rangle$ and $\langle \Omega | \mathcal{O}^{\dagger}(\mathbf{x}(\tau_2)) \mathcal{O}(\mathbf{x}(\tau_1)) | \Omega \rangle$.



- The observer can probe the vacuum |Ω) by measuring a local operator Ø and its adjoint Ø[†] along its worldline.
- For simplicity, we consider the twopoint functions $\mathcal{O} \cdot \mathcal{O}^{\dagger}$ with different orders $\langle \Omega | \mathcal{O}(\mathbf{x}(\tau_1)) \mathcal{O}^{\dagger}(\mathbf{x}(\tau_2)) | \Omega \rangle$ and $\langle \Omega | \mathcal{O}^{\dagger}(\mathbf{x}(\tau_2)) \mathcal{O}(\mathbf{x}(\tau_1)) | \Omega \rangle$.



- The observer can probe the vacuum |Ω⟩ by measuring a local operator *O* and its adjoint *O*[†] along its worldline.
- For simplicity, we consider the two-point functions $\mathcal{O} \cdot \mathcal{O}^{\dagger}$ with different orders $\langle \Omega | \mathcal{O}(\mathbf{x}(\tau_1)) \mathcal{O}^{\dagger}(\mathbf{x}(\tau_2)) | \Omega \rangle$ and $\langle \Omega | \mathcal{O}^{\dagger}(\mathbf{x}(\tau_2)) \mathcal{O}(\mathbf{x}(\tau_1)) | \Omega \rangle$.
- Poincare invariance tells us that these functions depend only on the norm and the sign of the time component of $\mathbf{x}(\tau_1) \mathbf{x}(\tau_2)$.
- So they depend only on $\tau = \tau_1 \tau_2$.

IV. An accelerating observer

• So we only need to consider

- The basic property of real time two-point functions in a thermal ensemble is that there is a holomorphic function on a strip in the complex plane whose boundary values on the two boundaries of the strip are $F(\tau)$ and $G(\tau)$.
- In general, the width of the strip is β , where $\beta = 1/T$ is the inverse temperature.
- Forget it? See page 199

IV. An accelerating observer

• So we only need to consider

 $F(\tau) = \langle \Omega \, | \, \mathcal{O}(\mathbf{x}(\tau)) \mathcal{O}^{\dagger}(\mathbf{x}(0)) \, | \, \Omega \rangle$

- The basic property of real time two-point functions in a thermal ensemble is that there is a holomorphic function on a strip in the complex plane whose boundary values on the two boundaries of the strip are $F(\tau)$ and $G(\tau)$.
- In general, the width of the strip is β , where $\beta = 1/T$ is the inverse temperature.
- Forget it? See page 199

IV. An accelerating observer

• So we only need to consider

 $F(\tau) = \langle \Omega | \mathcal{O}(\mathbf{x}(\tau)) \mathcal{O}^{\dagger}(\mathbf{x}(0)) | \Omega \rangle$ $G(\tau) = \langle \Omega | \mathcal{O}^{\dagger}(\mathbf{x}(0)) \mathcal{O}(\mathbf{x}(\tau)) | \Omega \rangle$

- The basic property of real time two-point functions in a thermal ensemble is that there is a holomorphic function on a strip in the complex plane whose boundary values on the two boundaries of the strip are $F(\tau)$ and $G(\tau)$.
- In general, the width of the strip is β , where $\beta = 1/T$ is the inverse temperature.
- Forget it? See page 199

- The basic property of real time two-point functions in a thermal ensemble is that there is a holomorphic function on a strip in the complex plane whose boundary values on the two boundaries of the strip are $F(\tau)$ and $G(\tau)$.
- We give two derivations of Unruh's result:
 - starting in real time and deducing the holomorphic properties of the correlation functions;
 - 2. starting in Euclidean signature and analytically continuing back to real time.

- Real time method:
- We set $\tau/R = s + i\theta$ with $s, \theta \in \mathbb{R}$, then

- Real time method:
- We set $\tau/R = s + i\theta$ with $s, \theta \in \mathbb{R}$, then

$$\mathbf{x}(\tau) = R \begin{pmatrix} \sinh(s+i\theta) \\ \cosh(s+i\theta) \end{pmatrix} = R \begin{pmatrix} \cos\theta\sinh s + i\sin\theta\cosh s \\ \cos\theta\cosh s + i\sin\theta\sinh s \end{pmatrix}$$

- Real time method:
- We set $\tau/R = s + i\theta$ with $s, \theta \in \mathbb{R}$, then

$$\mathbf{x}(\tau) = R \begin{pmatrix} \sinh(s+i\theta) \\ \cosh(s+i\theta) \end{pmatrix} = R \begin{pmatrix} \cos\theta\sinh s + i\sin\theta\cosh s \\ \cos\theta\cosh s + i\sin\theta\sinh s \end{pmatrix}$$

$$\therefore \mathbf{Im}(\mathbf{x}(\tau)) = R\sin\theta \begin{pmatrix} \cosh s \\ \sinh s \end{pmatrix}$$

- Real time method:
- We set $\tau/R = s + i\theta$ with $s, \theta \in \mathbb{R}$, then

$$\mathbf{x}(\tau) = R \begin{pmatrix} \sinh(s+i\theta) \\ \cosh(s+i\theta) \end{pmatrix} = R \begin{pmatrix} \cos\theta\sinh s + i\sin\theta\cosh s \\ \cos\theta\cosh s + i\sin\theta\sinh s \end{pmatrix}$$

$$\therefore \mathbf{Im}(\mathbf{x}(\tau)) = R\sin\theta \begin{pmatrix} \cosh s \\ \sinh s \end{pmatrix}$$

- $-\mathbf{Im}(\mathbf{x}(\tau))$ is future timelike $\Rightarrow F(\tau) = \langle \Omega | \mathcal{O}(\mathbf{x}(\tau)) \mathcal{O}^{\dagger}(\mathbf{x}(0)) | \Omega \rangle$ is holomorphic
- $-\mathbf{Im}(\mathbf{x}(\tau))$ is past timelike $\Rightarrow G(\tau) = \langle \Omega | \mathcal{O}^{\dagger}(\mathbf{x}(0)) \mathcal{O}(\mathbf{x}(\tau)) | \Omega \rangle$ is holomorphic

- Real time method:
- $-\mathbf{Im}(\mathbf{x}(\tau))$ is future timelike $\Rightarrow F(\tau) = \langle \Omega | \mathcal{O}(\mathbf{x}(\tau)) \mathcal{O}^{\dagger}(\mathbf{x}(0)) | \Omega \rangle$ is holomorphic
- $-\mathbf{Im}(\mathbf{x}(\tau))$ is past timelike $\Rightarrow G(\tau) = \langle \Omega | \mathcal{O}^{\dagger}(\mathbf{x}(0)) \mathcal{O}(\mathbf{x}(\tau)) | \Omega \rangle$ is holomorphic

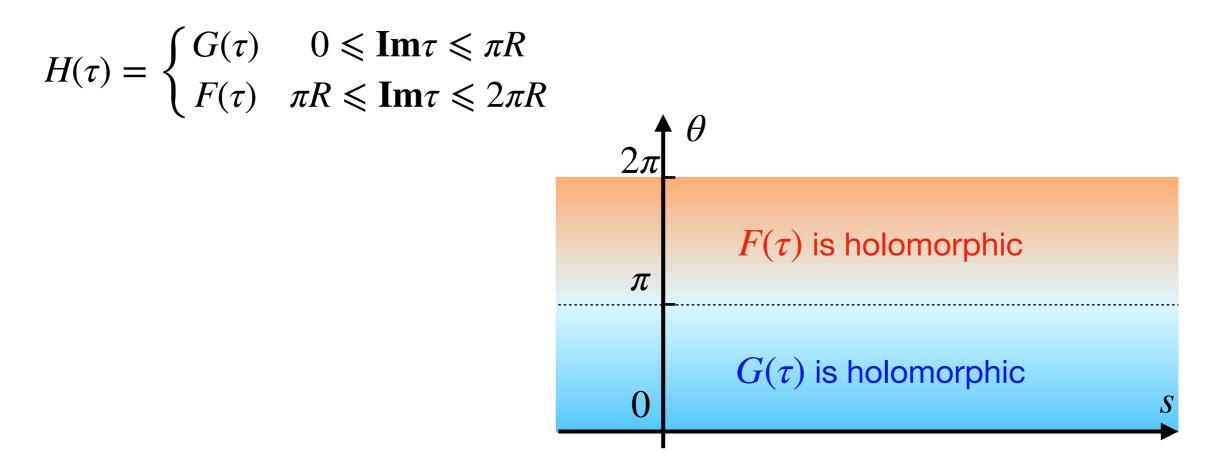
$$Im(\mathbf{x}(\tau)) = R \sin \theta \begin{pmatrix} \cosh s \\ \sinh s \end{pmatrix} \qquad 2\pi \qquad F(\tau) \text{ is holomorphic} \\ \pi \qquad G(\tau) \text{ is holomorphic} \qquad s$$

- Real time method:
- $G(\tau) = \langle \Omega | \mathscr{O}^{\dagger}(\mathbf{x}(0)) \mathscr{O}(\mathbf{x}(\tau)) | \Omega \rangle$ is holomorphic in the strip $0 \leq \theta \leq \pi$, which is $0 \leq \mathbf{Im}\tau \leq \pi R$;
- $F(\tau) = \langle \Omega | \mathcal{O}(\mathbf{x}(\tau)) \mathcal{O}^{\dagger}(\mathbf{x}(0)) | \Omega \rangle$ is holomorphic in the strip $\pi \leq \theta \leq 2\pi$ (or $-\pi \leq \theta \leq 0$), which is $\pi R \leq \mathrm{Im}\tau \leq 2\pi R$ (or $-\pi R \leq \mathrm{Im}\tau \leq 0$).

- Real time method:
- $G(\tau) = \langle \Omega | \mathscr{O}^{\dagger}(\mathbf{x}(0)) \mathscr{O}(\mathbf{x}(\tau)) | \Omega \rangle$ is holomorphic in the strip $0 \leq \theta \leq \pi$, which is $0 \leq \mathbf{Im}\tau \leq \pi R$;
- $F(\tau) = \langle \Omega | \mathcal{O}(\mathbf{x}(\tau)) \mathcal{O}^{\dagger}(\mathbf{x}(0)) | \Omega \rangle$ is holomorphic in the strip $\pi \leq \theta \leq 2\pi$ (or $-\pi \leq \theta \leq 0$), which is $\pi R \leq \mathrm{Im}\tau \leq 2\pi R$ (or $-\pi R \leq \mathrm{Im}\tau \leq 0$).
- At $\operatorname{Im} \tau = 0$, $G(\tau) = \langle \Omega | \mathscr{O}^{\dagger}(\mathbf{x}(0)) \mathscr{O}(\mathbf{x}(\tau)) | \Omega \rangle$ is simply the original correlation function on the observer's worldline.
- At $\operatorname{Im} \tau = \pi R$, $\mathbf{x}(\tau + i\pi R) = -\mathbf{x}(\tau)$ is again real, so the boundary value $G(R(s + i\pi)) = \langle \Omega | \mathcal{O}^{\dagger}(\mathbf{x}(0)) \mathcal{O}(-\mathbf{x}(Rs)) | \Omega \rangle$.

- Real time method:
- $G(\tau) = \langle \Omega | \mathscr{O}^{\dagger}(\mathbf{x}(0)) \mathscr{O}(\mathbf{x}(\tau)) | \Omega \rangle$ is holomorphic in the strip $0 \leq \theta \leq \pi$, which is $0 \leq \mathbf{Im}\tau \leq \pi R$;
- $F(\tau) = \langle \Omega | \mathcal{O}(\mathbf{x}(\tau)) \mathcal{O}^{\dagger}(\mathbf{x}(0)) | \Omega \rangle$ is holomorphic in the strip $\pi \leq \theta \leq 2\pi$ (or $-\pi \leq \theta \leq 0$), which is $\pi R \leq \mathbf{Im}\tau \leq 2\pi R$ (or $-\pi R \leq \mathbf{Im}\tau \leq 0$).
- At $\operatorname{Im} \tau = 2\pi R$, $F(\tau) = \langle \Omega | \mathcal{O}(\mathbf{x}(\tau)) \mathcal{O}^{\dagger}(\mathbf{x}(0)) | \Omega \rangle$ is simply the original correlation function on the observer's worldline.
- At $\operatorname{Im} \tau = \pi R$, $\mathbf{x}(\tau + i\pi R) = -\mathbf{x}(\tau)$ is again real, so the boundary value $F(R(s + i\pi)) = \langle \Omega | \mathcal{O}(-\mathbf{x}(Rs)) \mathcal{O}^{\dagger}(\mathbf{x}(0)) | \Omega \rangle$.

- Real time method:
- In fact, one can define a function $H(\tau)$ which is holomorphic on the combined strip $0 \leq \mathbf{Im}\tau \leq 2\pi R$ by:



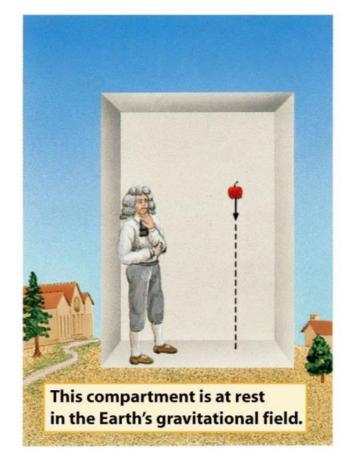
IV. An accelerating observer

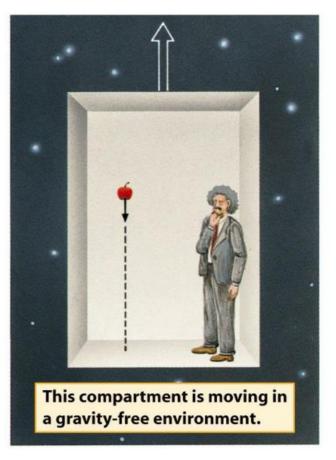
- Real time method:
- In fact, one can define a function $H(\tau)$ which is holomorphic on the combined strip $0 \leq \text{Im}\tau \leq 2\pi R$ by:

$$H(\tau) = \begin{cases} G(\tau) & 0 \leq \mathbf{Im}\tau \leq \pi R \\ F(\tau) & \pi R \leq \mathbf{Im}\tau \leq 2\pi R \end{cases}$$

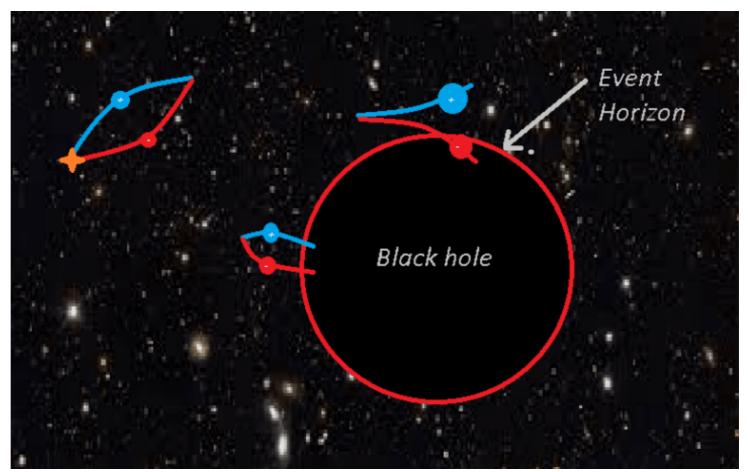
• This is the analytic behavior of a real time two-point correlation function in a thermal ensemble with the a strip of width $2\pi R$, so the temperature is $T = 1/(2\pi R)$.

- Unruh's temperature:
- If the equivalence principle of General Relativity is correct, any local measurement can not distinguish a gravitational field from an accelerated frame.

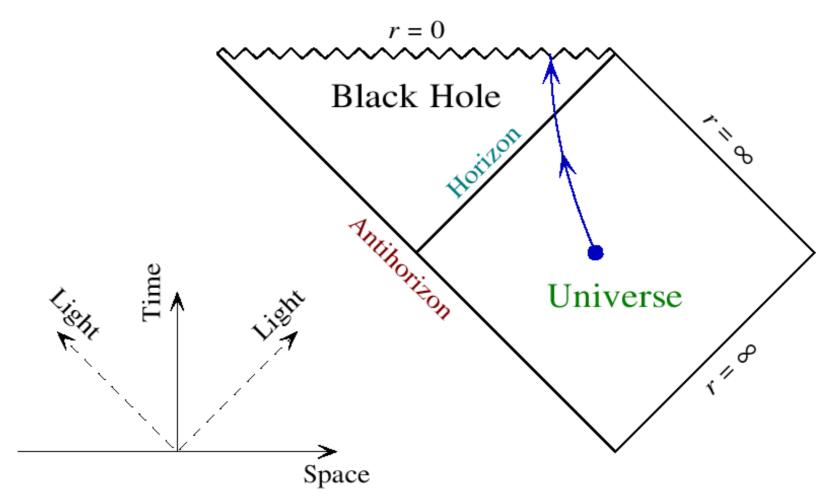




- Unruh's temperature:
- Hawking radiation (non-inertial observers in strong gravitational field)



- Unruh's temperature:
- Hawking radiation (non-inertial observers in strong gravitational field)



- Unruh's temperature:
- Hawking radiation (non-inertial observers in strong gravitational field) ⇒ what in an accelerating frame?

- Unruh's temperature:
- Hawking radiation (non-inertial observers in strong gravitational field) ⇒ what in an accelerating frame?
- An accelerating observer with some style of horizon should measure the "vacuum" as a thermal ensemble.

- Unruh's temperature:
- The simplest example: massless Hermitian scalar field two-point correlation function.

IV. An accelerating observer

- Unruh's temperature:
- The simplest example: massless Hermitian scalar field two-point correlation function.

 $F(\tau) = \langle \Omega \, | \, \varphi(\mathbf{x}(\tau)) \varphi^{\dagger}(\mathbf{x}(0)) \, | \, \Omega \rangle = \langle \Omega \, | \, \varphi(\mathbf{x}(\tau)) \varphi(\mathbf{x}(0)) \, | \, \Omega \rangle$

- Unruh's temperature:
- The simplest example: massless Hermitian scalar field two-point correlation function.

$$F(\tau) = \langle \Omega | \varphi(\mathbf{x}(\tau)) \varphi^{\dagger}(\mathbf{x}(0)) | \Omega \rangle = \langle \Omega | \varphi(\mathbf{x}(\tau)) \varphi(\mathbf{x}(0)) | \Omega \rangle$$
$$= \int \frac{d^{D-1} \mathbf{p} d^{D-1} \mathbf{q}}{(2\pi)^{2(D-1)} \sqrt{4E_{\mathbf{p}}E_{\mathbf{q}}}} \langle \Omega | a_{\mathbf{p}} a_{\mathbf{q}}^{\dagger} e^{-ip \cdot \mathbf{x}(\tau) + iq \cdot \mathbf{x}(0)} | \Omega \rangle$$

- Unruh's temperature:
- The simplest example: massless Hermitian scalar field two-point correlation function.

$$\begin{aligned} F(\tau) &= \langle \Omega \,|\, \varphi(\mathbf{x}(\tau))\varphi^{\dagger}(\mathbf{x}(0)) \,|\, \Omega \rangle = \langle \Omega \,|\, \varphi(\mathbf{x}(\tau))\varphi(\mathbf{x}(0)) \,|\, \Omega \rangle \\ &= \int \frac{d^{D-1}\mathbf{p}d^{D-1}\mathbf{q}}{(2\pi)^{2(D-1)}\sqrt{4E_{\mathbf{p}}E_{\mathbf{q}}}} \langle \Omega \,|\, a_{\mathbf{p}}a_{\mathbf{q}}^{\dagger}e^{-ip\cdot\mathbf{x}(\tau)+iq\cdot\mathbf{x}(0)} \,|\, \Omega \rangle \\ &= \int \frac{d^{D-1}\mathbf{p}}{(2\pi)^{D-1}2 \,|\,\mathbf{p}\,|} e^{-i|\mathbf{p}|(t(\tau)-t(0))+i\mathbf{p}\cdot(\mathbf{x}(\tau)-\mathbf{x}(0))} = \int \frac{p^{D-2}dpd^{D-2}\Omega_{p}}{(2\pi)^{D-1}2p} e^{-ip(\Delta t - \Delta x \cos \varphi_{1})} \end{aligned}$$

IV. An accelerating observer

- Unruh's temperature:
- The simplest example: massless Hermitian scalar field two-point correlation function.

$$\begin{split} F(\tau) &= \langle \Omega \,|\, \varphi(\mathbf{x}(\tau))\varphi^{\dagger}(\mathbf{x}(0)) \,|\, \Omega \rangle = \langle \Omega \,|\, \varphi(\mathbf{x}(\tau))\varphi(\mathbf{x}(0)) \,|\, \Omega \rangle \\ &= \int \frac{d^{D-1}\mathbf{p}d^{D-1}\mathbf{q}}{(2\pi)^{2(D-1)}\sqrt{4E_{\mathbf{p}}E_{\mathbf{q}}}} \langle \Omega \,|\, a_{\mathbf{p}}a_{\mathbf{q}}^{\dagger}e^{-ip\cdot\mathbf{x}(\tau)+iq\cdot\mathbf{x}(0)} \,|\, \Omega \rangle \\ &= \int \frac{d^{D-1}\mathbf{p}}{(2\pi)^{D-1}2 \,|\,\mathbf{p}\,|} e^{-i|\mathbf{p}|(t(\tau)-t(0))+i\mathbf{p}\cdot(\mathbf{x}(\tau)-\mathbf{x}(0))} = \int \frac{p^{D-2}dpd^{D-2}\Omega_{p}}{(2\pi)^{D-1}2p} e^{-ip(\Delta t - \Delta x \cos \varphi_{1})} \end{split}$$

• The integral of the angular coordinates are

$$\int d^{D-2}\Omega_p = \int_0^{\pi} \sin^{D-3}\varphi_1 d\varphi_1 \int_0^{\pi} \sin^{D-4}\varphi_2 d\varphi_2 \cdots \int_0^{2\pi} \varphi_{D-2} d\varphi_{D-2}$$

- Unruh's temperature:
- The simplest example: massless Hermitian scalar field two-point correlation function.

- Unruh's temperature:
- The simplest example: massless Hermitian scalar field two-point correlation function.

$$F(\tau) = \frac{1}{2(2\pi)^{D-1}} \int_0^\infty p^{D-3} dp \int_0^\pi \sin^{D-3} \varphi_1 d\varphi_1 \int_0^\pi \sin^{D-4} \varphi_2 d\varphi_2 \cdots \int_0^{2\pi} \varphi_{D-2} d\varphi_{D-2} e^{-ip(\Delta t - \Delta x \cos \varphi_1)}$$

- Unruh's temperature:
- The simplest example: massless Hermitian scalar field two-point correlation function.

$$\begin{split} F(\tau) &= \frac{1}{2(2\pi)^{D-1}} \int_0^\infty p^{D-3} dp \int_0^\pi \sin^{D-3} \varphi_1 d\varphi_1 \int_0^\pi \sin^{D-4} \varphi_2 d\varphi_2 \cdots \int_0^{2\pi} \varphi_{D-2} d\varphi_{D-2} e^{-ip(\Delta t - \Delta x \cos \varphi_1)} \\ &= \frac{2\pi}{2(2\pi)^{D-1}} \prod_{n=1}^{D-4} \frac{\sqrt{\pi} \Gamma((1+n)/2)}{\Gamma(1+n/2)} \int_0^\infty p^{D-3} dp \int_0^\pi e^{-ip(\Delta t - \Delta x \cos \varphi_1)} \sin^{D-3} \varphi_1 d\varphi_1 \end{split}$$

- Unruh's temperature:
- The simplest example: massless Hermitian scalar field two-point correlation function.

$$\begin{split} F(\tau) &= \frac{1}{2(2\pi)^{D-1}} \int_0^\infty p^{D-3} dp \int_0^\pi \sin^{D-3} \varphi_1 d\varphi_1 \int_0^\pi \sin^{D-4} \varphi_2 d\varphi_2 \cdots \int_0^{2\pi} \varphi_{D-2} d\varphi_{D-2} e^{-ip(\Delta t - \Delta x \cos \varphi_1)} \\ &= \frac{2\pi}{2(2\pi)^{D-1}} \prod_{n=1}^{D-4} \frac{\sqrt{\pi} \Gamma((1+n)/2)}{\Gamma(1+n/2)} \int_0^\infty p^{D-3} dp \int_0^\pi e^{-ip(\Delta t - \Delta x \cos \varphi_1)} \sin^{D-3} \varphi_1 d\varphi_1 \\ &= \frac{\pi^{-2+D/2}}{2(2\pi)^{D-2}} \prod_{n=1}^{D-4} \frac{\Gamma((1+n)/2)}{\Gamma(1+n/2)} \int_0^\pi (i(\Delta t - \Delta x \cos \varphi_1))^{2-D} \Gamma(D-2) \sin^{D-3} \varphi_1 d\varphi_1 \end{split}$$

- Unruh's temperature:
- The simplest example: massless Hermitian scalar field two-point correlation function.

$$\begin{split} F(\tau) &= \frac{1}{2(2\pi)^{D-1}} \int_0^\infty p^{D-3} dp \int_0^\pi \sin^{D-3} \varphi_1 d\varphi_1 \int_0^\pi \sin^{D-4} \varphi_2 d\varphi_2 \cdots \int_0^{2\pi} \varphi_{D-2} d\varphi_{D-2} e^{-ip(\Delta t - \Delta x \cos \varphi_1)} \\ &= \frac{2\pi}{2(2\pi)^{D-1}} \prod_{\substack{n=1\\ D=4}}^{D-4} \frac{\sqrt{\pi} \Gamma((1+n)/2)}{\Gamma(1+n/2)} \int_0^\infty p^{D-3} dp \int_0^\pi e^{-ip(\Delta t - \Delta x \cos \varphi_1)} \sin^{D-3} \varphi_1 d\varphi_1 \\ &= \frac{\pi^{-2+D/2}}{2(2\pi)^{D-2}} \prod_{\substack{n=1\\ n=1}}^{D-4} \frac{\Gamma((1+n)/2)}{\Gamma(1+n/2)} \int_0^\pi (i(\Delta t - \Delta x \cos \varphi_1))^{2-D} \Gamma(D-2) \sin^{D-3} \varphi_1 d\varphi_1 \\ &= \frac{\pi^{(D-3)/2}}{2(2\pi i)^{D-2} (\Delta t^2 - \Delta x^2)^{D/2-1}} \prod_{n=1}^{D-3} \frac{\Gamma((1+n)/2)}{\Gamma(1+n/2)} = \frac{\pi^{(D-3)/2}}{2(2\pi i)^{D-2} \Gamma((D-1)/2) (\Delta t^2 - \Delta x^2)^{D/2-1}} \end{split}$$

IV. An accelerating observer

- Unruh's temperature:
- The simplest example: massless Hermitian scalar field two-point correlation function.

$$\begin{split} F(\tau) &= \frac{1}{2(2\pi)^{D-1}} \int_0^\infty p^{D-3} dp \int_0^\pi \sin^{D-3} \varphi_1 d\varphi_1 \int_0^\pi \sin^{D-4} \varphi_2 d\varphi_2 \cdots \int_0^{2\pi} \varphi_{D-2} d\varphi_{D-2} e^{-ip(\Delta t - \Delta x \cos \varphi_1)} \\ &= \frac{2\pi}{2(2\pi)^{D-1}} \prod_{\substack{n=1\\ n=1}}^{D-4} \frac{\sqrt{\pi} \Gamma((1+n)/2)}{\Gamma(1+n/2)} \int_0^\infty p^{D-3} dp \int_0^\pi e^{-ip(\Delta t - \Delta x \cos \varphi_1)} \sin^{D-3} \varphi_1 d\varphi_1 \\ &= \frac{\pi^{-2+D/2}}{2(2\pi)^{D-2}} \prod_{\substack{n=1\\ n=1}}^{D-4} \frac{\Gamma((1+n)/2)}{\Gamma(1+n/2)} \int_0^\pi (i(\Delta t - \Delta x \cos \varphi_1))^{2-D} \Gamma(D-2) \sin^{D-3} \varphi_1 d\varphi_1 \\ &= \frac{\pi^{(D-3)/2}}{2(2\pi i)^{D-2} (\Delta t^2 - \Delta x^2)^{D/2-1}} \prod_{n=1}^{D-3} \frac{\Gamma((1+n)/2)}{\Gamma(1+n/2)} = \frac{\pi^{(D-3)/2}}{2(2\pi i)^{D-2} \Gamma((D-1)/2) (\Delta t^2 - \Delta x^2)^{D/2-1}} \end{split}$$

• The result requires $Im(\Delta t \pm \Delta x) < 0$ and D > 2

- Unruh's temperature:
- For inertial observers, one has $t(\tau) = \tau$ and $x^i(\tau) = 0$.

- Unruh's temperature:
- For inertial observers, one has $t(\tau) = \tau$ and $x^i(\tau) = 0$.

$$F(\tau) = \frac{\pi^{(D-3)/2}}{2(2\pi i)^{D-2}\Gamma((D-1)/2)(\tau - i\epsilon)^{D-2}}$$

IV. An accelerating observer

- Unruh's temperature:
- For inertial observers, one has $t(\tau) = \tau$ and $x^{i}(\tau) = 0$.

$$F(\tau) = \frac{\pi^{(D-3)/2}}{2(2\pi i)^{D-2}\Gamma((D-1)/2)(\tau - i\epsilon)^{D-2}}$$

• For accelerated observers, one has $t(\tau) = R \sinh(\tau/R)$ and $x(\tau) = R \cosh(\tau/R)$.

IV. An accelerating observer

- Unruh's temperature:
- For inertial observers, one has $t(\tau) = \tau$ and $x^{i}(\tau) = 0$.

$$F(\tau) = \frac{\pi^{(D-3)/2}}{2(2\pi i)^{D-2}\Gamma((D-1)/2)(\tau - i\epsilon)^{D-2}}$$

• For accelerated observers, one has $t(\tau) = R \sinh(\tau/R)$ and $x(\tau) = R \cosh(\tau/R)$.

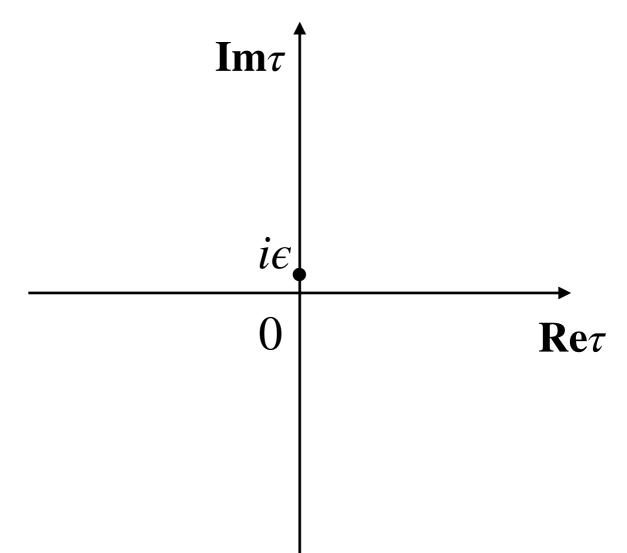
$$F(\tau) = \frac{\pi^{(D-3)/2}}{2(2\pi i)^{D-2}\Gamma((D-1)/2)R^{D-2}\sinh^{D-2}(\tau/(2R) - i\epsilon)}$$

- Unruh's temperature:
- The φ field energy fluctuation of the state $|\Omega\rangle$ is determined by

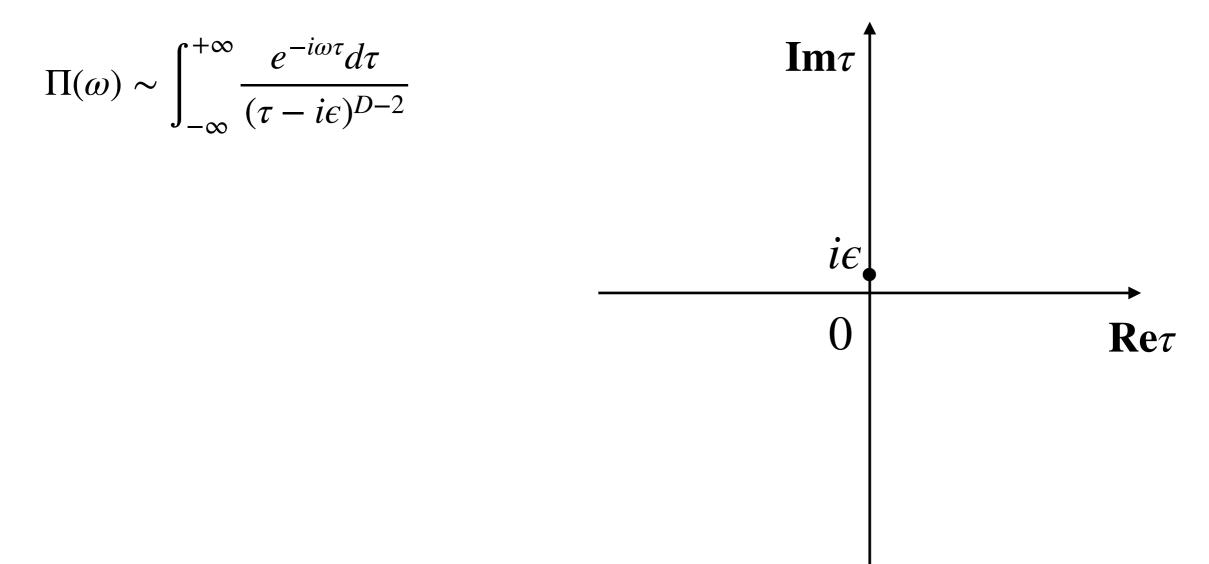
- Unruh's temperature:
- The φ field energy fluctuation of the state $\left| \Omega \right\rangle$ is determined by

$$\Pi(\omega) = \int_{-\infty}^{+\infty} e^{-i\omega t} \langle \Omega \,|\, \varphi(t)\varphi(0) \,|\, \Omega \rangle dt = \int_{-\infty}^{+\infty} e^{-i\omega \tau} F(\tau) d\tau$$

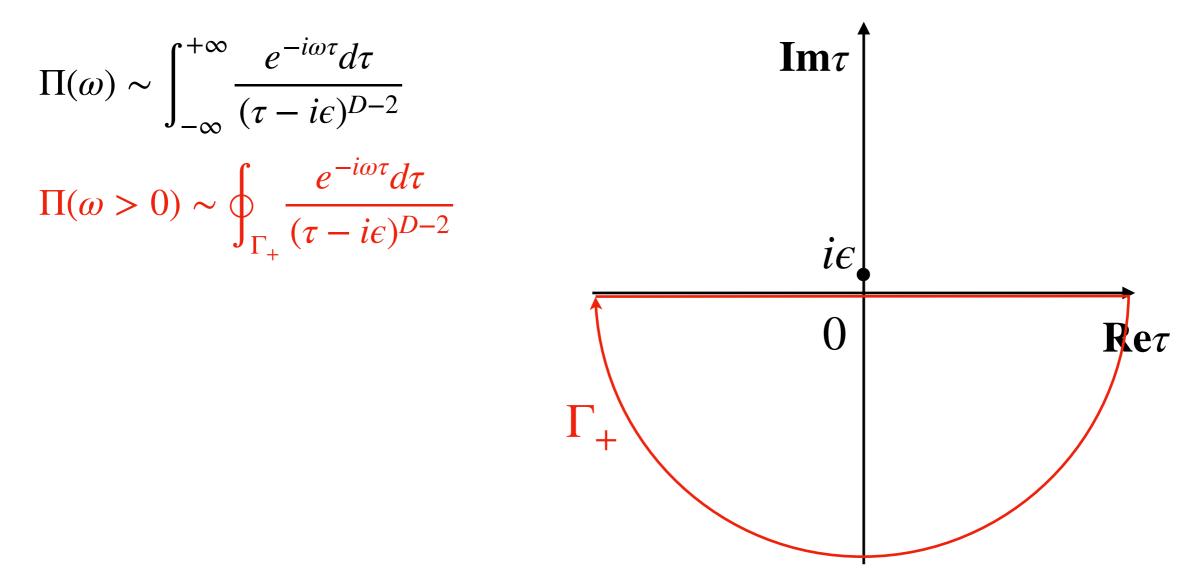
- Unruh's temperature:
- For inertial observers, the fluctuation function is



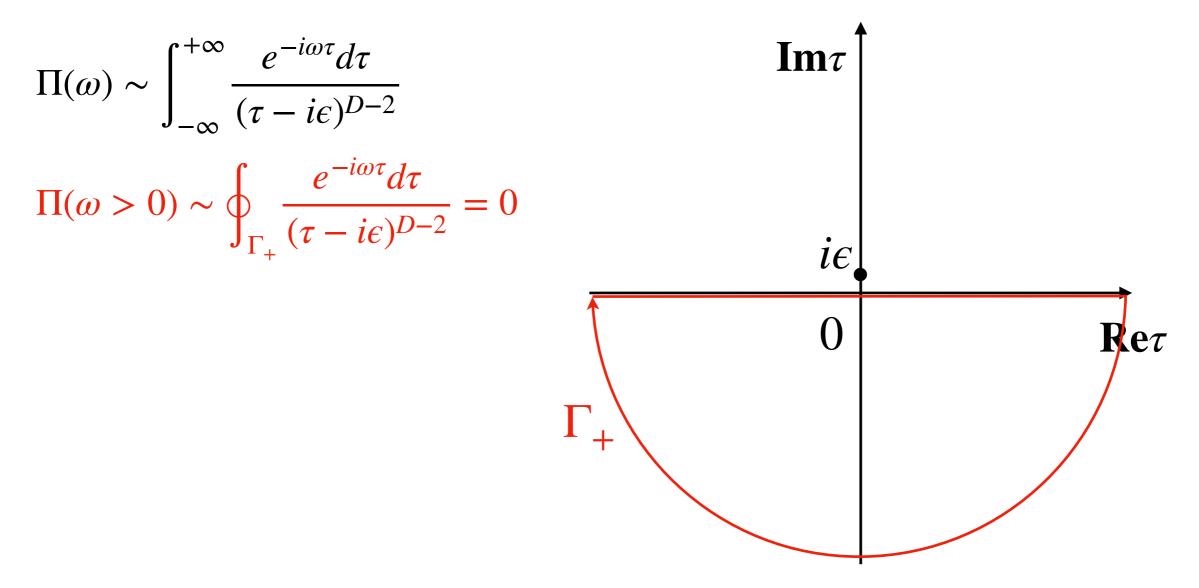
- Unruh's temperature:
- For inertial observers, the fluctuation function is



- Unruh's temperature:
- For inertial observers, the fluctuation function is



- Unruh's temperature:
- For inertial observers, the fluctuation function is



- Unruh's temperature:
- For accelerated observers, the fluctuation function is (for D = 4)

- Unruh's temperature:
- For accelerated observers, the fluctuation function is (for D = 4)

$$\Pi(\omega) = -\frac{1}{4\pi^2 R^2} \int_{-\infty}^{+\infty} \frac{e^{-i\omega\tau} d\tau}{\sinh^2(\tau/(2R) - i\epsilon)}$$

- Unruh's temperature:
- For accelerated observers, the fluctuation function is (for D = 4)

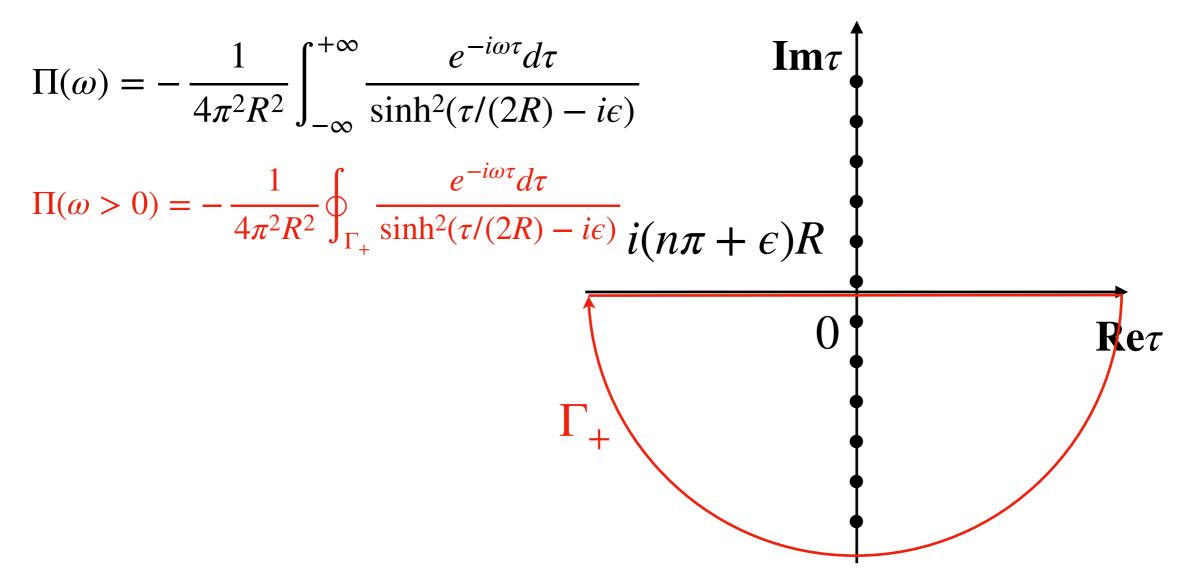
$$\Pi(\omega) = -\frac{1}{4\pi^2 R^2} \int_{-\infty}^{+\infty} \frac{e^{-i\omega\tau} d\tau}{\sinh^2(\tau/(2R) - i\epsilon)} \mathbf{Im}\tau$$

$$i(n\pi + \epsilon)R$$

$$0$$

$$Re\tau$$

- Unruh's temperature:
- For accelerated observers, the fluctuation function is (for D = 4)



- Unruh's temperature:
- For accelerated observers, the fluctuation function is (for D = 4)

$$\Pi(\omega) = -\frac{1}{4\pi^2 R^2} \int_{-\infty}^{+\infty} \frac{e^{-i\omega\tau} d\tau}{\sinh^2(\tau/(2R) - i\epsilon)}$$
$$\Pi(\omega > 0) = -\frac{1}{4\pi^2 R^2} \oint_{\Gamma_+} \frac{e^{-i\omega\tau} d\tau}{\sinh^2(\tau/(2R) - i\epsilon)}$$

- Unruh's temperature:
- For accelerated observers, the fluctuation function is (for D = 4)

$$\Pi(\omega) = -\frac{1}{4\pi^2 R^2} \int_{-\infty}^{+\infty} \frac{e^{-i\omega\tau} d\tau}{\sinh^2(\tau/(2R) - i\epsilon)}$$

$$\Pi(\omega > 0) = -\frac{1}{4\pi^2 R^2} \oint_{\Gamma_+} \frac{e^{-i\omega\tau} d\tau}{\sinh^2(\tau/(2R) - i\epsilon)}$$

$$= -\frac{2\pi i}{4\pi^2 R^2} \sum_{n=1}^{\infty} \operatorname{Res}_{z=-i(2n\pi+\epsilon)R} \left(\frac{e^{-i\omega z}}{\sinh^2(z/(2R) - i\epsilon)}\right)$$

- Unruh's temperature:
- For accelerated observers, the fluctuation function is (for D = 4)

$$\Pi(\omega) = -\frac{1}{4\pi^2 R^2} \int_{-\infty}^{+\infty} \frac{e^{-i\omega\tau} d\tau}{\sinh^2(\tau/(2R) - i\epsilon)}$$

$$\Pi(\omega > 0) = -\frac{1}{4\pi^2 R^2} \oint_{\Gamma_+} \frac{e^{-i\omega\tau} d\tau}{\sinh^2(\tau/(2R) - i\epsilon)}$$

$$= -\frac{2\pi i}{4\pi^2 R^2} \sum_{n=1}^{\infty} \operatorname{Res}_{z=-i(2n\pi+\epsilon)R} \left(\frac{e^{-i\omega z}}{\sinh^2(z/(2R) - i\epsilon)}\right)$$

$$= -\frac{i}{2\pi R^2} \sum_{n=1}^{\infty} (-4i)R^2 \omega \left(e^{-2\pi R\omega}\right)^n$$

- Unruh's temperature:
- For accelerated observers, the fluctuation function is (for D = 4)

$$\Pi(\omega) = -\frac{1}{4\pi^2 R^2} \int_{-\infty}^{+\infty} \frac{e^{-i\omega\tau} d\tau}{\sinh^2(\tau/(2R) - i\epsilon)}$$

$$\Pi(\omega > 0) = -\frac{1}{4\pi^2 R^2} \oint_{\Gamma_+} \frac{e^{-i\omega\tau} d\tau}{\sinh^2(\tau/(2R) - i\epsilon)}$$

$$= -\frac{2\pi i}{4\pi^2 R^2} \sum_{n=1}^{\infty} \operatorname{Res}_{z=-i(2n\pi+\epsilon)R} \left(\frac{e^{-i\omega z}}{\sinh^2(z/(2R) - i\epsilon)}\right)$$

$$= -\frac{i}{2\pi R^2} \sum_{n=1}^{\infty} (-4i)R^2 \omega \left(e^{-2\pi R\omega}\right)^n$$

$$= \frac{2\omega}{\pi} \frac{1}{e^{2\pi R\omega} - 1}$$

- Unruh's temperature:
- For accelerated observers, the fluctuation function is (for D = 4)

$$\Pi(\omega) = \frac{2\omega}{\pi} \frac{1}{e^{2\pi R\omega} - 1}$$

- This is the standard black-body spectrum (thermal) with temperature $T = 1/(2\pi R)$.
- Thus an accelerated detector measures the vacuum as a thermal state!

- Unruh's temperature:
- For accelerated observers, the fluctuation function is (for D = 4)

$$\Pi(\omega) = \frac{2\omega}{\pi} \frac{1}{e^{2\pi R\omega} - 1}$$

- This is the standard black-body spectrum (thermal) with temperature $T = 1/(2\pi R)$.
- Thus an accelerated detector measures the vacuum as a thermal state!

$$T = \frac{1}{2\pi R} = \frac{\hbar a}{2\pi c k_B} = 4.05 \times 10^{-21} \mathbf{K} \times \left(\frac{a}{\mathbf{m/s^2}}\right)$$

- Unruh's temperature:
- For accelerated observers, the fluctuation function is (for D = 4)

$$\Pi(\omega) = \frac{2\omega}{\pi} \frac{1}{e^{2\pi R\omega} - 1}$$

- This is the standard black-body spectrum (thermal) with temperature $T = 1/(2\pi R)$.
- Thus an accelerated detector measures the vacuum as a thermal state!

$$T = \frac{1}{2\pi R} = \frac{\hbar a}{2\pi c k_B} = 4.05 \times 10^{-21} \text{K} \times \left(\frac{a}{m'}\right)$$

Extremely Low!!!

- Euclidean method: (more transparent)
- The Euclidean version ($t_E = it$) of the worldline of the uniformly accelerated observer is:

$$\binom{t_E(\theta)}{x(\theta)} = R \binom{\sin \theta}{\cos \theta}$$

- The method is quite straightforward.
- In this slides, we will ignore this method which is given shortly in Witten's paper.

To Be Continued...