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A Review



ALGEBRAS WITH A UNIVERSAL 
DIVERGENCE IN THE 
ENTANGLEMENT ENTROPY



• Let  be an open set in Minkowski spacetime , it has a local 
algebra  with commutant  (which, if Haag duality 
holds, is  for some other open set  )
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• Let  be an open set in Minkowski spacetime , it has a local 
algebra  with commutant  (which, if Haag duality 
holds, is  for some other open set  )


•   and  are von Neumann algebras of bounded operators 
which act on the Hilbert space  of the theory in question with 
the vacuum state  as a cyclic separating vector.


• For a finite-dimensional quantum system (quantum mechanics), 
the existence of such a cyclic separating vector would imply a 
factorization , with  acting on one factor and  
acting on the other.
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• Let  be an open set in Minkowski spacetime , it has a local 
algebra  with commutant  (which, if Haag duality 
holds, is  for some other open set  )


•   and  are von Neumann algebras of bounded operators 
which act on the Hilbert space  of the theory in question with 
the vacuum state  as a cyclic separating vector.


• Such a factorization cannot exist in quantum field theory, for it 
would imply the existence of tensor product states  
with no entanglement between  and .
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• Let  be an open set in Minkowski spacetime , it has a local 
algebra  with commutant  (which, if Haag duality 
holds, is  for some other open set  )


•   and  are von Neumann algebras of bounded operators 
which act on the Hilbert space  of the theory in question with 
the vacuum state  as a cyclic separating vector.


• Such a factorization cannot exist in quantum field theory, for it 
would imply the existence of tensor product states  
with no entanglement between  and .


• Instead, in quantum field theory, there is a universal ultraviolet 
divergence in the entanglement entropy.
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• The essence of the matter is that in quantum field theory, the 
divergence in the entanglement entropy is not a property of the 
states but of the algebras  and .


• It means that the divergence is an essential property of the 
algebras but not of some specific representations of the algebra.
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• The essence of the matter is that in quantum field theory, the 
divergence in the entanglement entropy is not a property of the 
states but of the algebras  and .


• It means that the divergence is an essential property of the 
algebras but not of some specific representations of the algebra.


• Mathematically, these algebras are not the familiar type I von 
Neumann algebras which can act irreducibly (have irreducible 
representation) in a Hilbert space.


• Instead they are more exotic algebras with property that the 
structure of the algebra has the divergence in the entanglement 
entropy built in.

𝔄 𝔄′ 
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• We will explain barely enough about von Neumann algebras to 
indicate how that comes about in this section. (Murray and von 
Neumann, 1936)

I. The problem

ALGEBRAS WITH A UNIVERSAL DIVERGENCE 
IN THE ENTANGLEMENT ENTROPY

Neumann János Lajos

(1903/12/28-1957/02/08)

?
Francis Joseph Murray


(1911/02/03-1996/03/15)

https://www.jstor.org/stable/1968693?origin=crossref&seq=1#metadata_info_tab_contents
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• Before going to the next section, we first give a mathematically 
rigorous definition of von Neumann algebra as a supplementary 
material. 


• Do not like C*-algebra, because the definition of the weak 
operator topology of the von Neumann algebra depends on the 
Hilbert space, people usually use a concrete definition of von 
Neumann algebra.
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• A von Neumann algebra on Hilbert space  is a subalgebra  
of the bounded operator  which is closed under involution 
(the *-operation) and .

ℋ 𝔐
ℬ(ℋ)

𝔐′ ′ = 𝔐
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• We will explain barely enough about von Neumann algebras to 
indicate how that comes about in this section.


• The discussion will be limited on the fundamental block of the 
von Neumann algebra — factor.
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• We will explain barely enough about von Neumann algebras to 
indicate how that comes about in this section.


• The discussion will be limited on the fundamental block of the 
von Neumann algebra — factor.


• A von Neumann algebra is called a factor, if it has a trivial center.
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 is a factor 𝔄 ⇔ 𝔄 ∩ 𝔄′ = ℂ ⋅ 1



• A type  von Neumann algebra  can act irreducibly by bounded 
operators on a Hilbert space .

I 𝔄
𝒦

II. Algebras of type I
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• A type  von Neumann algebra  can act irreducibly by bounded 
operators on a Hilbert space .


• Because we require  to be a factor, it actually consists of all 
bounded operators on .


• A von Neumann algebra (with trivial center) acting irreducibly on 
a (at most separated) Hilbert space is always of one of two types


1. Type : ;


2. Type : .

I 𝔄
𝒦

𝔄
𝒦

Id dim 𝒦 = d < ∞

I∞ dim 𝒦 = ℵ1

II. Algebras of type I
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• Trace: a trace on a von Neumann algebra is a linear function 
 that satisfies  and 

 for .


• It is obviously that any algebra of type  has a trace.


• For type , one can also define a trace except that it can not be 
defined on the whole algebra.

Tr : a ∈ 𝔄 → Tr(a) ∈ ℂ Tr(ab) = Tr(ba)
Tr(a†a) > 0 a ≠ 0

Id

I∞

II. Algebras of type I
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• We will give a quick description of the algebras of type .


• It can be constructed as follows from a countably infinite set of 
maximally entangled qubit pairs.

II

III. Algebras of type II
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• Let  be a vector space consisting of  complex matrices 
with Hilbert space structure defined by .


• A bipartite system

V 2 × 2
(v, w) = Tr(v†w)

|ΨA⟩ = a1 | ↑A ⟩ + a2 | ↓A ⟩
|ΨB⟩ = b1 | ↑B ⟩ + b2 | ↓B ⟩} → |ΨAB⟩ = ( | ↑A ⟩ | ↓A ⟩) (a11 a12

a21 a22) ( | ↑B ⟩
| ↓B ⟩)

= a11 | ↑A ↑B ⟩ + a12 | ↑A ↓B ⟩ + a21 | ↓A ↑B ⟩
+a22 | ↓A ↓B ⟩
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• Let  be a vector space consisting of  complex matrices 
with Hilbert space structure defined by .


• A bipartite system


• The algebra  (  ) of the operators of subsystem A (B) is the 
algebra of  complex matrices .


• The operator  (  ) acts on  on the left (right) by 
 (  ).

V 2 × 2
(v, w) = Tr(v†w)

MA MB
2 × 2 I2

aA ∈ MA aB ∈ MB V
v → aAv v → vaT

B

|ΨA⟩ = a1 | ↑A ⟩ + a2 | ↓A ⟩
|ΨB⟩ = b1 | ↑B ⟩ + b2 | ↓B ⟩} → |ΨAB⟩ = ( | ↑A ⟩ | ↓A ⟩) (a11 a12

a21 a22) ( | ↑B ⟩
| ↓B ⟩)

= a11 | ↑A ↑B ⟩ + a12 | ↑A ↓B ⟩ + a21 | ↓A ↑B ⟩
+a22 | ↓A ↓B ⟩
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• The algebra  (  ) of the operators of subsystem A (B) is the 
algebra of  complex matrices .


• The operator  (  ) acts on  on the left (right) by 
 (  ).


• It is obviously that  and  are commutants.

MA MB
2 × 2 M2(ℂ)

aA ∈ MA aB ∈ MB V
v → aAv v → vaT

B

MA MB

̂aA ̂aB |ψ⟩ = ( | ↑A ⟩ | ↓A ⟩) aA [vψaT
B ( | ↑B ⟩

| ↓B ⟩)]
= [( | ↑A ⟩ | ↓A ⟩) aAvψ] aT

B ( | ↑B ⟩
| ↓B ⟩) = ̂aB ̂aA |ψ⟩

III. Algebras of type II
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• Now consider a countably infinite set of copies of this 
construction.


• For , let  be a space of  matrices acted on on the 
left by  and on the right by .

k ⩾ 1 V[k] 2 × 2
M[k]

A M[k]
B
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• Now consider a countably infinite set of copies of this 
construction.


• For , let  be a space of  matrices acted on on the 
left by  and on the right by .

k ⩾ 1 V[k] 2 × 2
M[k]

A M[k]
B

…

III. Algebras of type II
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• Roughly speaking, we want to consider the infinite tensor 
product . The dimension of such 
tensor product space is , which is uncountable.


• To get a Hilbert space of countably infinite dimension, we define 
a space  that consists of tensor products 

 such that all 
but finitely many of the  are equal to .


• The inner product is defined by .


• One completes it to get a Hilbert space , which is called a 
restricted tensor product of the .

V[1] ⊗ V[2] ⊗ ⋯ ⊗ V[k] ⊗ ⋯
ℵℵ1

1

ℋ0
v1 ⊗ v2 ⊗ ⋯ ⊗ vk ⊗ ⋯ ∈ V[1] ⊗ V[2] ⊗ ⋯ ⊗ V[k] ⊗ ⋯

vk 1′ 2×2 = 2−1/212×2

(v, w) =
∞

∏
i=1

Trv†
i wi =

n

∏
i=1

Trv†
i wi

ℋ
V[k]
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• We also want to define an algebra  as an infinite tensor product 
.


• A general element is .


• However, it would not preserve the condition that all but finitely 
many of the  are equal to !


• So we have to first define the algebra  that consists of 
elements  such that all but finitely 
many of the  are equal to .

𝔄
M[1]

A ⊗ M[2]
A ⊗ ⋯ ⊗ M[k]

A ⊗ ⋯

a𝔄 = a[1]
A ⊗ a[2]

A ⊗ ⋯ ⊗ a[k]
A ⊗ ⋯

vk 1′ 2×2

𝔄0
a𝔄 = a[1]

A ⊗ a[2]
A ⊗ ⋯ ⊗ a[k]

A ⊗ ⋯
a[k]

A 12×2
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• The algebra  acts on the left on .


• One needs to add the limit point to make it closed under the 
weak operator topology.


• A sequence  is (weak) convergence if  exists for 

all ; if so, we define an operator  by 
, and we define  to include all such limits.


• This definition ensures that for , ,  is a 
continuous function of .

𝔄0 ℋ

a(k)
𝔄 ∈ 𝔄0 lim

k→∞
a(k)

𝔄 χ

χ ∈ ℋ a𝔄 : ℋ → ℋ
a𝔄 χ = lim

k→∞
a(k)

𝔄 χ 𝔄

a𝔄 ∈ 𝔄 χ ∈ ℋ a𝔄 χ
a𝔄

III. Algebras of type II
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• Note that the definition of the algebra depends on a knowledge 
of the Hilbert space.


• The commutant of  is an isomorphic algebra  which is defined 
in just the same way as a subalgebra of 

.

𝔄 𝔅

M[1]
B ⊗ M[2]

B ⊗ ⋯ ⊗ M[k]
B ⊗ ⋯

III. Algebras of type II
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• It is obviously that the vector 
 is cyclic separating for 

both  and .


• A natural linear function on  is defined by .


• Because  is separating for , any nonzero  satisfies 
 and hence .

Ψ = 1′ 2×2 ⊗ 1′ 2×2 ⊗ ⋯ ⊗ 1′ 2×2 ⊗ ⋯ ∈ ℋ
𝔄 𝔅

𝔄 F(a𝔄) = ⟨Ψ |a𝔄 |Ψ⟩

Ψ 𝔄 a𝔄 ∈ 𝔄
a𝔄 |Ψ⟩ ≠ 0 F(a†

𝔄a𝔄) > 0
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• It is obviously that the vector 
 is cyclic separating for 

both  and .


• A natural linear function on  is defined by .


• Because  is separating for , any nonzero  satisfies 
 and hence .

Ψ = 1′ 2×2 ⊗ 1′ 2×2 ⊗ ⋯ ⊗ 1′ 2×2 ⊗ ⋯ ∈ ℋ
𝔄 𝔅

𝔄 F(a𝔄) = ⟨Ψ |a𝔄 |Ψ⟩

Ψ 𝔄 a𝔄 ∈ 𝔄
a𝔄 |Ψ⟩ ≠ 0 F(a†

𝔄a𝔄) > 0

F(a𝔄b𝔄) = ⟨Ψ |a𝔄b𝔄 |Ψ⟩ = 2−k
k<∞

∏
i=1

Tr(a[i]
𝔄 b[i]

𝔄 ) = 2−k
k<∞

∏
i=1

Tr(b[i]
𝔄 a[i]

𝔄 )
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• It is obviously that the vector 
 is cyclic separating for 

both  and .


• A natural linear function on  is defined by .


• Because  is separating for , any nonzero  satisfies 
 and hence .

Ψ = 1′ 2×2 ⊗ 1′ 2×2 ⊗ ⋯ ⊗ 1′ 2×2 ⊗ ⋯ ∈ ℋ
𝔄 𝔅

𝔄 F(a𝔄) = ⟨Ψ |a𝔄 |Ψ⟩

Ψ 𝔄 a𝔄 ∈ 𝔄
a𝔄 |Ψ⟩ ≠ 0 F(a†

𝔄a𝔄) > 0

F(a𝔄b𝔄) = ⟨Ψ |a𝔄b𝔄 |Ψ⟩ = 2−k
k<∞

∏
i=1

Tr(a[i]
𝔄 b[i]

𝔄 ) = 2−k
k<∞

∏
i=1

Tr(b[i]
𝔄 a[i]

𝔄 )

= ⟨Ψ |b𝔄a𝔄 |Ψ⟩ = F(b𝔄a𝔄)

III. Algebras of type II
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• Since elements  of the form considered are dense in , 
 exists for any .


• So  defines a trace on , we denote it as 
.


• Because  is separating for , any nonzero  satisfies 
 and hence .

a𝔄, b𝔄 𝔄
F(a𝔄b𝔄) = F(b𝔄a𝔄) a𝔄, b𝔄 ∈ 𝔄

F(a𝔄) = ⟨Ψ |a𝔄 |Ψ⟩ 𝔄
Tr(a𝔄)

Ψ 𝔄 a𝔄 ∈ 𝔄
a𝔄 |Ψ⟩ ≠ 0 F(a†

𝔄a𝔄) > 0

III. Algebras of type II
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• In the case of a type  algebra, one can define a trace on a 
subalgebra but the trace of the identity element is infinite.


• By contrast, a hyperfinite type  algebra has a trace that is 
defined on the whole algebra, and which we have normalized so 
that .

I∞

II1

Tr(1𝔄) = 1

III. Algebras of type II
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• The entanglement entropy in the state .Ψ

III. Algebras of type II
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• The entanglement entropy in the state .Ψ
𝒮Ψ = − Tr𝔄 (ρ𝔄 log ρ𝔄) = −

∞

∑
k=1

Tr𝔄[k] (ρ𝔄[k] log ρ𝔄[k])
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• The entanglement entropy in the state .Ψ
𝒮Ψ = − Tr𝔄 (ρ𝔄 log ρ𝔄) = −

∞

∑
k=1

Tr𝔄[k] (ρ𝔄[k] log ρ𝔄[k])

= −
∞

∑
k=1

Tr ((1/2 0
0 1/2) log (1/2 0

0 1/2)) =
∞

∑
k=1

log 2 = ∞
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• The entanglement entropy in the state .Ψ
𝒮Ψ = − Tr𝔄 (ρ𝔄 log ρ𝔄) = −

∞

∑
k=1

Tr𝔄[k] (ρ𝔄[k] log ρ𝔄[k])

= −
∞

∑
k=1

Tr ((1/2 0
0 1/2) log (1/2 0

0 1/2)) =
∞

∑
k=1

log 2 = ∞

• The divergence is due to the fact that each factor of  
represents a perfectly entangled qubit pair shared between  
and .


• Replacing  by another state in  will only change the 
entanglement entropy by a finite or at least less divergent 
amount. Because there are always infinite  factors in a state 
by definition.

1′ 2×2
𝔄

𝔅

Ψ ℋ

1′ 2×2

III. Algebras of type II



ALGEBRAS WITH A UNIVERSAL DIVERGENCE 
IN THE ENTANGLEMENT ENTROPY

• The entanglement entropy in the state .Ψ
𝒮Ψ = − Tr𝔄 (ρ𝔄 log ρ𝔄) = −

∞

∑
k=1

Tr𝔄[k] (ρ𝔄[k] log ρ𝔄[k])

= −
∞

∑
k=1

Tr ((1/2 0
0 1/2) log (1/2 0

0 1/2)) =
∞

∑
k=1

log 2 = ∞

• So the leading divergence in the entanglement entropy in a 
hyperfinite type  algebra is universal, as in quantum field 
theory.

II1

III. Algebras of type II
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• Another fundamental fact — more of less equivalent to the 
universal divergence in the entanglement entropy — is that the 
type  algebra  has no irreducible representation!


• By construction,  acts on . But this is far from irreducible as it 
commutes with the action of  on the same Hilbert space.

II1 𝔄

𝔄 ℋ
𝔅

III. Algebras of type II
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• One may make a smaller representation of  by projecting  
onto a invariant subspace by setting  and considering the 
element of  as following:

𝔄 ℋ
J2

𝔅

III. Algebras of type II



ALGEBRAS WITH A UNIVERSAL DIVERGENCE 
IN THE ENTANGLEMENT ENTROPY

• One may make a smaller representation of  by projecting  
onto a invariant subspace by setting  and considering the 
element of  as following:

𝔄 ℋ
J2

𝔅

J2 = (1 0
0 0)
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• One may make a smaller representation of  by projecting  
onto a invariant subspace by setting  and considering the 
element of  as following:

𝔄 ℋ
J2

𝔅

J2 = (1 0
0 0)

Π′ k = J2 ⊗ J2 ⊗ ⋯ ⊗ J2

first k terms

⊗ 12×2 ⊗ 12×2⋯
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• One may make a smaller representation of  by projecting  
onto a invariant subspace by setting  and considering the 
element of  as following:

𝔄 ℋ
J2

𝔅

J2 = (1 0
0 0)

Π′ k = J2 ⊗ J2 ⊗ ⋯ ⊗ J2

first k terms

⊗ 12×2 ⊗ 12×2⋯

Tr(Π′ k) = ⟨Ψ |J2 ⊗ J2 ⊗ ⋯ ⊗ J2 ⊗ 12×2 ⊗ 12×2⋯ |Ψ⟩ = 2−k

III. Algebras of type II



ALGEBRAS WITH A UNIVERSAL DIVERGENCE 
IN THE ENTANGLEMENT ENTROPY

• Because , it is a projection operator.


• The subspace  is a representation of .


• In a sense that was made precisely by Murray and von Neumann, 
it is smaller than  by a factor of .
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• But the local algebras in quantum field theory are not type  
algebras, because they do not possess a trace!
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• More general algebras can be constructed by proceeding 
similarly, but with reduced entanglement.


• One replaces the maximal entanglement limit element  with 
, a pair of qubits with nonzero but nonmaximal entanglement. 

1′ 2×2
K2,λ

IV. Algebras of type III

ALGEBRAS WITH A UNIVERSAL DIVERGENCE 
IN THE ENTANGLEMENT ENTROPY

K2,λ =
1

1 + λ (
1 0
0 λ), 0 < λ < 1



• Then one can define the Hilbert space  and the algebra  
similarly to the type  case.  is different from  because  
is different from .


• The definition of  is also similar to , and  
is again a cyclic and separating element for both  and .


• Unfortunately, the linear function  does not 
satisfy , so it is not a trace.
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• The entanglement entropy in the state  is divergent, because it 
describes an infinite collection of qubit pairs each with the same 
entanglement.


• Any state in  has the same universal leading divergence in the 
entanglement entropy.


• The action of  on  is again far away from irreducible. 


• However, although we will not prove it, the invariant subspaces in 
which  can be decomposed are isomorphic as representations 
of   to   itself: a hyperfinite von Neumann algebra of type 

 has only one nontrivial representation, up to isomorphism. 

Ψλ

ℋλ

𝔄λ ℋλ

ℋλ
𝔄λ ℋλ

III

IV. Algebras of type III

ALGEBRAS WITH A UNIVERSAL DIVERGENCE 
IN THE ENTANGLEMENT ENTROPY



• For ,  and  are nonisomorphic.


• Other cases?

λ ≠ λ̃ 𝔄λ 𝔄λ̃
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• We have seen the infinite entanglement chain with fixed  
(maximal entanglement, type ) and fixed  
(nonmaximal entanglement, type ).


• Given a sequence , and consider the algebra  
acts on the left of the Hilbert space  completed from the 
vectors  such that  for all but 
finitely many . 


• The vector  is again a cyclic 
and separating vector for  and .


• The expectation  is not a trace unless the  are all .

λ = 1
II1 0 < λ < 1

III

{λn}, 0 < λn ⩽ 1 𝔄 ⃗λ
ℋ ⃗λ

v1 ⊗ v2 ⊗ ⋯ ⊗ vn ⊗ ⋯ vn = K2,λn

n

Ψ ⃗λ = K2,λ1
⊗ K2,λ2

⊗ ⋯ ⊗ K2,λn
⊗ ⋯

𝔄 ⃗λ 𝔄′ ⃗λ
= 𝔅 ⃗λ

⟨Ψ ⃗λ |a |Ψ ⃗λ⟩ λi 1
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• There are some cases as following:


1.  : this gives the type  algebra as before;


2.  : if the convergence is fast enough, this gives the type 
 algebra; if the convergence is not fast enough, this gives a 

new algebra defined to be of type ;


3.   does not converge and has at least two limit points in 
: this is a new algebra defined to be of type .

lim λn → λ, 0 < λ < 1 IIIλ

lim λn → 0
I∞

III0

{λn}
(0, 1) III1
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• Conclusion: the local algebras  in quantum field theory are 
of type , because they do not have a trace.


• They are believed to be of type .


• The aim of this subsection is to give a somewhat heuristic 
explanation of this statement by using the spectrum of the 
modular operator to distinguish the different algebras.

𝔄(𝒰)
III

III1
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• The modular operator  acts on a  matrix  by 


• The eigenvalues of this linear transformation is .


• In fact,  is diagonalized.

ΔΨ 2 × 2 x ∈ V

1, λ, λ−1

ΔΨ

ΔΨ(x) = ρAx(ρT
B )−1

• The whole Hilbert space  is an infinite tensor product of the 
bipartite system.


• So the eigenvalues of  are all integer powers of , each 
occurring infinitely often.

ℋλ

ΔΨ λ
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• The accumulation points of the eigenvalues are 
.{0} ∪ {λn |n ∈ ℤ}
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•   is cyclic separating for  if 
the  approach  sufficiently fast.


• The spectrum of  is more complicated, but  and the integer 
powers of  are still accumulation points. 


• Still more generally, in the case of a type  algebra, for any 
cyclic separating vector , not necessarily of the form , the 
integer powers of  and  are accumulation points of the 
eigenvalues.

Ψ ⃗λ = K2,λ1
⊗ K2,λ2

⊗ ⋯ ⊗ K2,λn
⊗ ⋯ 𝔄λ

{λn} λ

ΔΨ ⃗λ
0

λ

IIIλ
Ψ Ψ ⃗λ

λ 0
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• For type  algebra, , so the only unavoidable 
accumulation points of the eigenvalues of  are  and .


• These values continue to be accumulation points if  is 
replaced by any cyclic separating vector of a type  algebra.

III0 lim λn → 0
ΔΨ ⃗λ

0 1

Ψ ⃗λ
III0
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• Type  algebra (  has more than one limit points):


- Suppose  take two values  and , each for infinite times;


- The eigenvalues of  consist of the numbers  ( ), 
each value occurring infinitely many times;


- If there is a  s.t.  ( ) , then the 
algebra is in fact a type  algebra;


- Otherwise, any non-negative real number is an accumulation point 
of the eigenvalues of the operator .

III1 {λn}

λn λ λ̃

ΔΨ ⃗λ
λnλ̃m m, n ∈ ℤ

0 < λ′ < 1 λ = λ′ a, λ̃ = λ′ b a, b ∈ ℤ
IIIλ′ 

ΔΨ ⃗λ
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• Type  algebra (  has more than one limit points):


- For any cyclic separating vector , the spectrum of  (including 
accumulation points of eigenvalues) comprises the full semi-infinite 
interval .


- (  )

III1 {λn}

Ψ ΔΨ

[0, + ∞)

0.9n × 0.8m, n, m ∈ ℤ, − 100 ⩽ n, m ⩽ 100

-0.5 0 0.5 1.0 1.5 2.0
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• Quantum field theory:


- Consider the wedge region  and the cyclic separating vector , 
the modular operator is .


- The boost generator  has a continuous spectrum consisting of all 
real numbers, so  has a continuous spectrum  
consisting of all positive numbers.


- At short distances, any state is indistinguishable from the vacuum.


- So we would expect that acting on excitations of very short 
wavelength,  can be approximated by  and therefore has all 
points in  in its spectrum. 

𝒰 Ω
ΔΩ = exp(−2πK)

K
ΔΩ [0, + ∞)

ΔΨ ΔΩ
[0, + ∞)
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• Quantum field theory:


- Consider very high energy excitations localized near the corner


- For these modes,  looks like the wedge region 


- So one would expect that for such high energy excitations,  
looks like the Lorentz boost generators and has all positive real 
numbers in its spectrum

𝒰𝒱 𝒰

ΔΩ(𝒰𝒱)

Σ

𝒱
∂𝒱

𝒰𝒱 = D(𝒱)

∂𝒰

The corner of  along  ∂𝒰𝒱 ∂𝒱


