Entanglement properties of quantum field theory

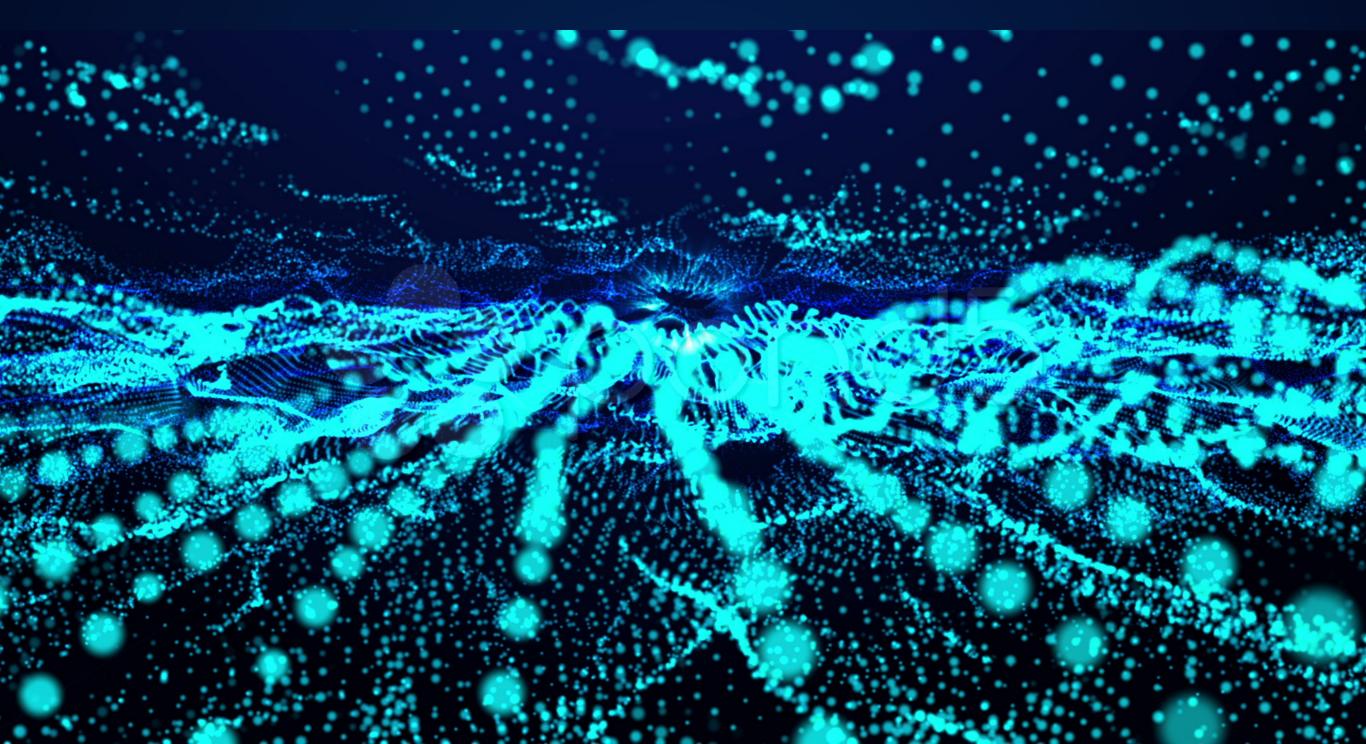
A note of Witten's paper "APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory"

Part IV: Algebras with a Universal Divergence in the Entanglement Entropy and Factorized States

Hao Zhang Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences

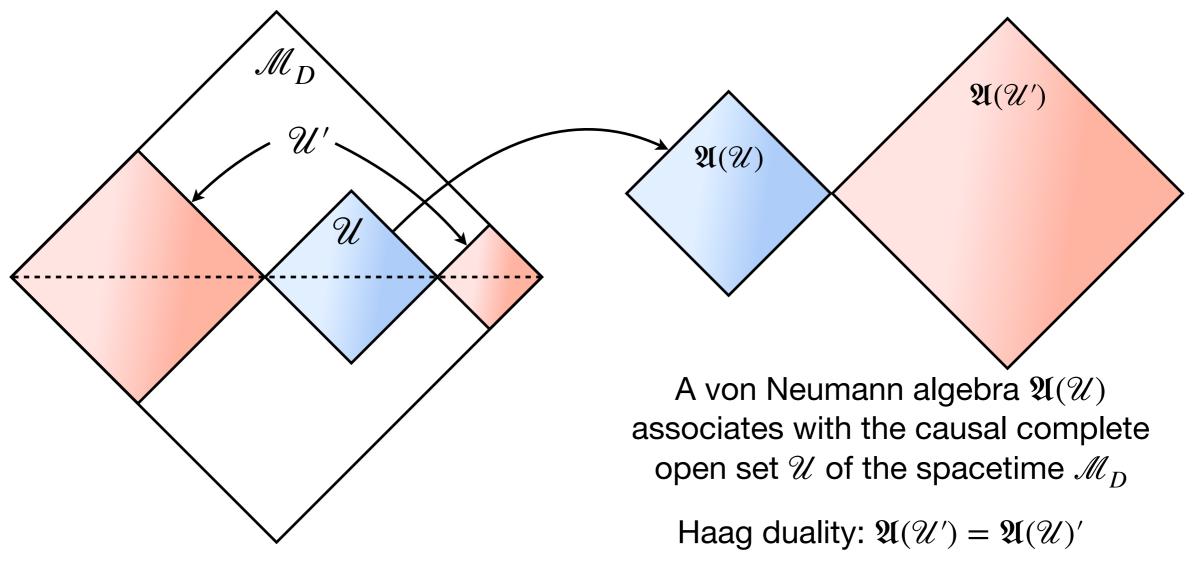
A Review

- The Reeh-Schlieder Theorem
- The Modular Operator and Relative Entropy
- Finite-dimensional Quantum Systems and Some Lessons
- A Fundamental Example



I. The problem

Let 𝒰 be an open set in Minkowski spacetime ึ D, it has a local algebra 𝔄 = 𝔅(𝔅) with commutant 𝔅' (which, if Haag duality holds, is 𝔅(𝔅') for some other open set 𝔅')



- Let 𝒰 be an open set in Minkowski spacetime ึ D, it has a local algebra 𝔄 = 𝔅(𝔅) with commutant 𝔅' (which, if Haag duality holds, is 𝔅(𝔅') for some other open set 𝔅')
- \mathfrak{A} and \mathfrak{A}' are von Neumann algebras of bounded operators which act on the Hilbert space \mathscr{H} of the theory in question with the vacuum state $|\Omega\rangle$ as a cyclic separating vector.

- Let 𝒰 be an open set in Minkowski spacetime ึ D, it has a local algebra 𝔄 = 𝔅(𝔅) with commutant 𝔅' (which, if Haag duality holds, is 𝔅(𝔅') for some other open set 𝔅')
- \mathfrak{A} and \mathfrak{A}' are von Neumann algebras of bounded operators which act on the Hilbert space \mathscr{H} of the theory in question with the vacuum state $|\Omega\rangle$ as a cyclic separating vector.
- For a finite-dimensional quantum system (quantum mechanics), the existence of such a cyclic separating vector would imply a factorization $\mathscr{H} = \mathscr{H}_1 \otimes \mathscr{H}_2$, with \mathfrak{A} acting on one factor and \mathfrak{A}' acting on the other.

- Let 𝒰 be an open set in Minkowski spacetime ึ D, it has a local algebra 𝔄 = 𝔄(𝔅) with commutant 𝔄' (which, if Haag duality holds, is 𝔄(𝔅') for some other open set 𝔅')
- \mathfrak{A} and \mathfrak{A}' are von Neumann algebras of bounded operators which act on the Hilbert space \mathscr{H} of the theory in question with the vacuum state $|\Omega\rangle$ as a cyclic separating vector.
- Such a factorization cannot exist in quantum field theory, for it would imply the existence of tensor product states $|\psi\rangle \otimes |\chi\rangle$ with no entanglement between \mathcal{U} and \mathcal{U}' .

- Let 𝒰 be an open set in Minkowski spacetime ึ D, it has a local algebra 𝔄 = 𝔄(𝔅) with commutant 𝔄' (which, if Haag duality holds, is 𝔄(𝔅') for some other open set 𝔅')
- \mathfrak{A} and \mathfrak{A}' are von Neumann algebras of bounded operators which act on the Hilbert space \mathscr{H} of the theory in question with the vacuum state $|\Omega\rangle$ as a cyclic separating vector.
- Such a factorization cannot exist in quantum field theory, for it would imply the existence of tensor product states $|\psi\rangle \otimes |\chi\rangle$ with no entanglement between \mathscr{U} and \mathscr{U}' .
- Instead, in quantum field theory, there is a universal ultraviolet divergence in the entanglement entropy.

- The essence of the matter is that in quantum field theory, the divergence in the entanglement entropy is not a property of the states but of the algebras *A* and *A*.
- It means that the divergence is an essential property of the algebras but not of some specific representations of the algebra.

- The essence of the matter is that in quantum field theory, the divergence in the entanglement entropy is not a property of the states but of the algebras *A* and *A*.
- It means that the divergence is an essential property of the algebras but not of some specific representations of the algebra.
- Mathematically, these algebras are not the familiar type I von Neumann algebras which can act irreducibly (have irreducible representation) in a Hilbert space.

- The essence of the matter is that in quantum field theory, the divergence in the entanglement entropy is not a property of the states but of the algebras II and II'.
- It means that the divergence is an essential property of the algebras but not of some specific representations of the algebra.
- Mathematically, these algebras are not the familiar type I von Neumann algebras which can act irreducibly (have irreducible representation) in a Hilbert space.
- Instead they are more exotic algebras with property that the structure of the algebra has the divergence in the entanglement entropy built in.

I. The problem

 We will explain barely enough about von Neumann algebras to indicate how that comes about in this section. (<u>Murray and von</u> <u>Neumann, 1936</u>)

Neumann János Lajos (1903/12/28-1957/02/08)

Francis Joseph Murray (1911/02/03-1996/03/15)

- Before going to the next section, we first give a mathematically rigorous definition of von Neumann algebra as a supplementary material.
- Do not like C*-algebra, because the definition of the weak operator topology of the von Neumann algebra depends on the Hilbert space, people usually use a concrete definition of von Neumann algebra.

I. The problem

A von Neumann algebra on Hilbert space ℋ is a subalgebra 𝔐 of the bounded operator 𝔅(ℋ) which is closed under involution (the *-operation) and 𝔐″ = 𝔐.

- We will explain barely enough about von Neumann algebras to indicate how that comes about in this section.
- The discussion will be limited on the fundamental block of the von Neumann algebra — factor.

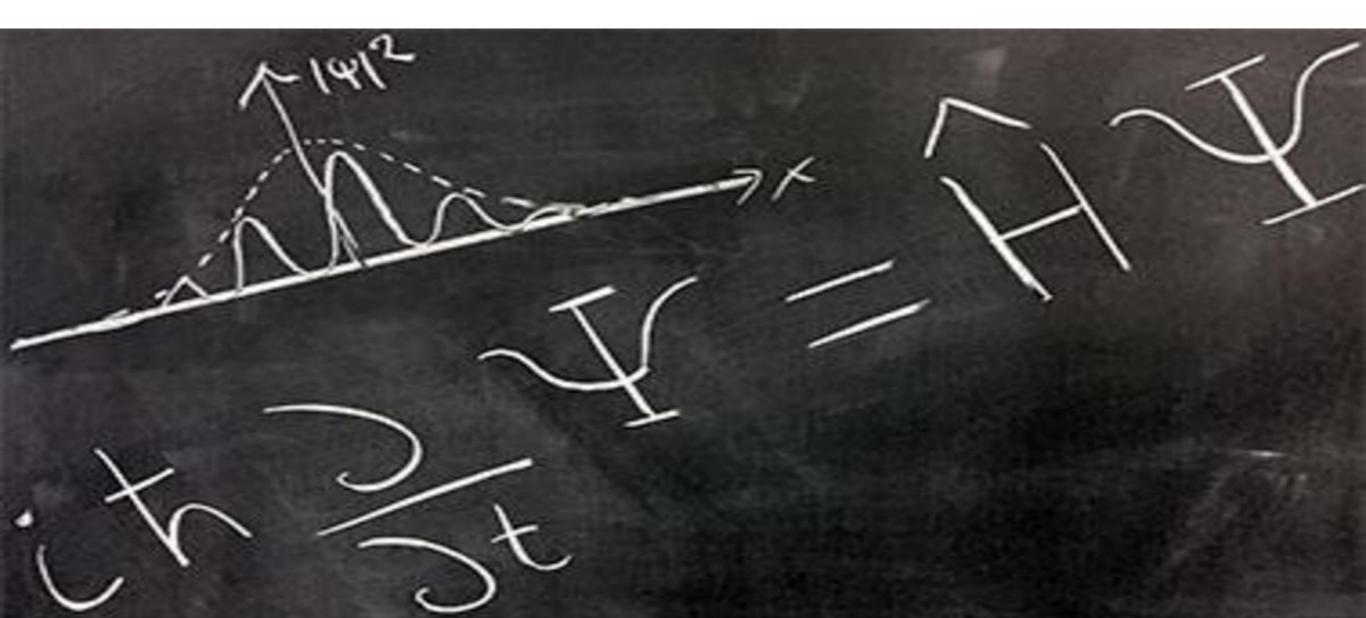
I. The problem

- We will explain barely enough about von Neumann algebras to indicate how that comes about in this section.
- The discussion will be limited on the fundamental block of the von Neumann algebra — factor.
- A von Neumann algebra is called a factor, if it has a trivial center.

 \mathfrak{A} is a factor $\Leftrightarrow \mathfrak{A} \cap \mathfrak{A}' = \mathbb{C} \cdot 1$

II. Algebras of type I

• A type I von Neumann algebra \mathfrak{A} can act irreducibly by bounded operators on a Hilbert space \mathscr{K} .



- A type I von Neumann algebra \mathfrak{A} can act irreducibly by bounded operators on a Hilbert space \mathscr{K} .
- Because we require \mathfrak{A} to be a factor, it actually consists of all bounded operators on \mathscr{K} .
- A von Neumann algebra (with trivial center) acting irreducibly on a (at most separated) Hilbert space is always of one of two types
 - 1. Type \mathbf{I}_d : dim $\mathscr{K} = d < \infty$;
 - 2. Type \mathbf{I}_{∞} : dim $\mathscr{K} = \aleph_1$.

- **Trace**: a trace on a von Neumann algebra is a linear function $Tr: a \in \mathfrak{A} \to Tr(a) \in \mathbb{C}$ that satisfies Tr(ab) = Tr(ba) and $Tr(a^{\dagger}a) > 0$ for $a \neq 0$.
- It is obviously that any algebra of type I_d has a trace.
- For type $I_\infty,$ one can also define a trace except that it can not be defined on the whole algebra.

- We will give a quick description of the algebras of type II.
- It can be constructed as follows from a countably infinite set of maximally entangled qubit pairs.

- Let *V* be a vector space consisting of 2×2 complex matrices with Hilbert space structure defined by $(v, w) = \mathbf{Tr}(v^{\dagger}w)$.
- A bipartite system

$$\begin{split} |\Psi_{A}\rangle &= a_{1} |\uparrow_{A}\rangle + a_{2} |\downarrow_{A}\rangle \\ |\Psi_{B}\rangle &= b_{1} |\uparrow_{B}\rangle + b_{2} |\downarrow_{B}\rangle \end{split} \rightarrow |\Psi_{AB}\rangle = \left(|\uparrow_{A}\rangle |\downarrow_{A}\rangle\right) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} |\uparrow_{B}\rangle \\ |\downarrow_{B}\rangle \end{pmatrix} \\ &= a_{11} |\uparrow_{A}\uparrow_{B}\rangle + a_{12} |\uparrow_{A}\downarrow_{B}\rangle + a_{21} |\downarrow_{A}\uparrow_{B}\rangle \\ &+ a_{22} |\downarrow_{A}\downarrow_{B}\rangle \end{split}$$

- Let *V* be a vector space consisting of 2×2 complex matrices with Hilbert space structure defined by $(v, w) = \mathbf{Tr}(v^{\dagger}w)$.
- A bipartite system

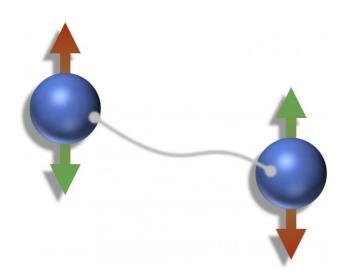
$$\begin{split} |\Psi_{A}\rangle &= a_{1} |\uparrow_{A}\rangle + a_{2} |\downarrow_{A}\rangle \\ |\Psi_{B}\rangle &= b_{1} |\uparrow_{B}\rangle + b_{2} |\downarrow_{B}\rangle \end{split} \rightarrow |\Psi_{AB}\rangle = \left(|\uparrow_{A}\rangle |\downarrow_{A}\rangle\right) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} |\uparrow_{B}\rangle \\ |\downarrow_{B}\rangle \end{pmatrix} \\ &= a_{11} |\uparrow_{A}\uparrow_{B}\rangle + a_{12} |\uparrow_{A}\downarrow_{B}\rangle + a_{21} |\downarrow_{A}\uparrow_{B}\rangle \\ &+ a_{22} |\downarrow_{A}\downarrow_{B}\rangle \end{split}$$

- The algebra $M_A(M_B)$ of the operators of subsystem A (B) is the algebra of 2×2 complex matrices I_2 .
- The operator $a_A \in M_A$ ($a_B \in M_B$) acts on *V* on the left (right) by $v \to a_A v$ ($v \to v a_B^T$).

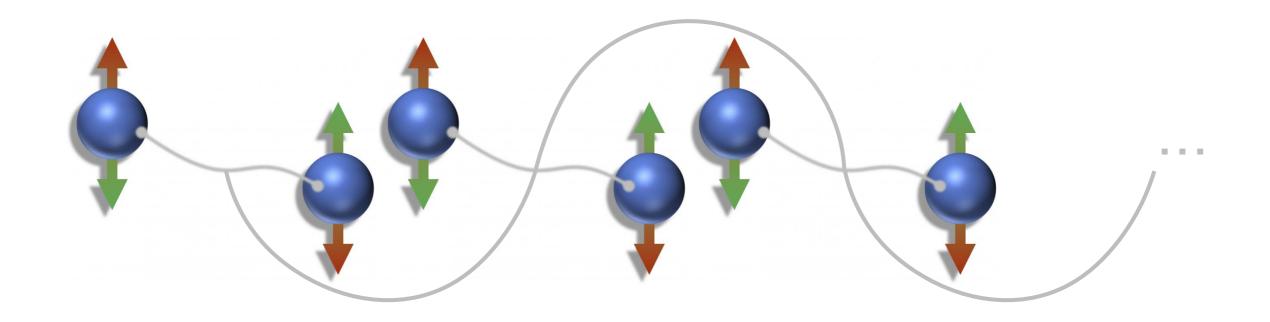
- The algebra $M_A(M_B)$ of the operators of subsystem A (B) is the algebra of 2×2 complex matrices $M_2(\mathbb{C})$.
- The operator $a_A \in M_A$ ($a_B \in M_B$) acts on *V* on the left (right) by $v \to a_A v$ ($v \to v a_B^T$).
- It is obviously that M_A and M_B are commutants.

$$\hat{a}_{A}\hat{a}_{B}|\psi\rangle = \left(|\uparrow_{A}\rangle |\downarrow_{A}\rangle\right)a_{A}\left[v_{\psi}a_{B}^{T}\left(|\uparrow_{B}\rangle\right)|\downarrow_{B}\rangle\right]$$
$$= \left[\left(|\uparrow_{A}\rangle |\downarrow_{A}\rangle\right)a_{A}v_{\psi}\right]a_{B}^{T}\left(|\uparrow_{B}\rangle\right)|=\hat{a}_{B}\hat{a}_{A}|\psi\rangle$$

- Now consider a countably infinite set of copies of this construction.
- For k ≥ 1, let V^[k] be a space of 2 × 2 matrices acted on on the left by M^[k]_A and on the right by M^[k]_B.



- Now consider a countably infinite set of copies of this construction.
- For $k \ge 1$, let $V^{[k]}$ be a space of 2×2 matrices acted on on the left by $M_A^{[k]}$ and on the right by $M_B^{[k]}$.



III. Algebras of type II

- Roughly speaking, we want to consider the infinite tensor product V^[1] ⊗ V^[2] ⊗ … ⊗ V^[k] ⊗ …. The dimension of such tensor product space is ℵ^{ℵ₁}₁, which is uncountable.
- To get a Hilbert space of countably infinite dimension, we define a space ℋ₀ that consists of tensor products
 v₁ ⊗ v₂ ⊗ … ⊗ v_k ⊗ … ∈ V^[1] ⊗ V^[2] ⊗ … ⊗ V^[k] ⊗ … such that all but finitely many of the v_k are equal to 1'_{2×2} = 2^{-1/2}1_{2×2}.

• The inner product is defined by $(v, w) = \prod_{i=1}^{\infty} \mathbf{Tr} v_i^{\dagger} w_i = \prod_{i=1}^{n} \mathbf{Tr} v_i^{\dagger} w_i$.

• One completes it to get a Hilbert space \mathscr{H} , which is called a restricted tensor product of the $V^{[k]}$.

- We also want to define an algebra \mathfrak{A} as an infinite tensor product $M_A^{[1]} \otimes M_A^{[2]} \otimes \cdots \otimes M_A^{[k]} \otimes \cdots$.
- A general element is $a_{\mathfrak{A}} = a_A^{[1]} \otimes a_A^{[2]} \otimes \cdots \otimes a_A^{[k]} \otimes \cdots$.
- However, it would not preserve the condition that all but finitely many of the v_k are equal to $\mathbf{1}'_{2\times 2}$!
- So we have to first define the algebra \mathfrak{A}_0 that consists of elements $a_{\mathfrak{A}} = a_A^{[1]} \otimes a_A^{[2]} \otimes \cdots \otimes a_A^{[k]} \otimes \cdots$ such that all but finitely many of the $a_A^{[k]}$ are equal to $\mathbf{1}_{2 \times 2}$.

III. Algebras of type II

- The algebra \mathfrak{A}_0 acts on the left on \mathscr{H} .
- One needs to add the limit point to make it closed under the weak operator topology.

• A sequence $a_{\mathfrak{A}}^{(k)} \in \mathfrak{A}_0$ is (weak) convergence if $\lim_{k \to \infty} a_{\mathfrak{A}}^{(k)} \chi$ exists for all $\chi \in \mathscr{H}$; if so, we define an operator $a_{\mathfrak{A}} : \mathscr{H} \to \mathscr{H}$ by $a_{\mathfrak{A}} \chi = \lim_{k \to \infty} a_{\mathfrak{A}}^{(k)} \chi$, and we define \mathfrak{A} to include all such limits.

• This definition ensures that for $a_{\mathfrak{A}} \in \mathfrak{A}, \chi \in \mathcal{H}, a_{\mathfrak{A}}\chi$ is a continuous function of $a_{\mathfrak{A}}$.

- Note that the definition of the algebra depends on a knowledge of the Hilbert space.
- The commutant of \mathfrak{A} is an isomorphic algebra \mathfrak{B} which is defined in just the same way as a subalgebra of $M_B^{[1]} \otimes M_B^{[2]} \otimes \cdots \otimes M_B^{[k]} \otimes \cdots$.

- It is obviously that the vector $\Psi = \mathbf{1}'_{2\times 2} \otimes \mathbf{1}'_{2\times 2} \otimes \cdots \otimes \mathbf{1}'_{2\times 2} \otimes \cdots \in \mathscr{H} \text{ is cyclic separating for}$ both \mathfrak{A} and \mathfrak{B} .
- A natural linear function on \mathfrak{A} is defined by $F(a_{\mathfrak{A}}) = \langle \Psi | a_{\mathfrak{A}} | \Psi \rangle$.
- Because Ψ is separating for \mathfrak{A} , any nonzero $a_{\mathfrak{A}} \in \mathfrak{A}$ satisfies $a_{\mathfrak{A}} |\Psi\rangle \neq 0$ and hence $F(a_{\mathfrak{A}}^{\dagger}a_{\mathfrak{A}}) > 0$.

- It is obviously that the vector $\Psi = \mathbf{1}'_{2\times 2} \otimes \mathbf{1}'_{2\times 2} \otimes \cdots \otimes \mathbf{1}'_{2\times 2} \otimes \cdots \in \mathscr{H} \text{ is cyclic separating for}$ both \mathfrak{A} and \mathfrak{B} .
- A natural linear function on \mathfrak{A} is defined by $F(a_{\mathfrak{A}}) = \langle \Psi | a_{\mathfrak{A}} | \Psi \rangle$.
- Because Ψ is separating for \mathfrak{A} , any nonzero $a_{\mathfrak{A}} \in \mathfrak{A}$ satisfies $a_{\mathfrak{A}} |\Psi\rangle \neq 0$ and hence $F(a_{\mathfrak{A}}^{\dagger}a_{\mathfrak{A}}) > 0$.

$$F(a_{\mathfrak{A}}b_{\mathfrak{A}}) = \langle \Psi | a_{\mathfrak{A}}b_{\mathfrak{A}} | \Psi \rangle = 2^{-k} \prod_{i=1}^{k < \infty} \mathbf{Tr}(a_{\mathfrak{A}}^{[i]}b_{\mathfrak{A}}^{[i]}) = 2^{-k} \prod_{i=1}^{k < \infty} \mathbf{Tr}(b_{\mathfrak{A}}^{[i]}a_{\mathfrak{A}}^{[i]})$$

- It is obviously that the vector $\Psi = \mathbf{1}'_{2\times 2} \otimes \mathbf{1}'_{2\times 2} \otimes \cdots \otimes \mathbf{1}'_{2\times 2} \otimes \cdots \in \mathscr{H} \text{ is cyclic separating for}$ both \mathfrak{A} and \mathfrak{B} .
- A natural linear function on \mathfrak{A} is defined by $F(a_{\mathfrak{A}}) = \langle \Psi | a_{\mathfrak{A}} | \Psi \rangle$.
- Because Ψ is separating for \mathfrak{A} , any nonzero $a_{\mathfrak{A}} \in \mathfrak{A}$ satisfies $a_{\mathfrak{A}} |\Psi\rangle \neq 0$ and hence $F(a_{\mathfrak{A}}^{\dagger}a_{\mathfrak{A}}) > 0$.

$$\begin{split} F(a_{\mathfrak{A}}b_{\mathfrak{A}}) &= \langle \Psi \,|\, a_{\mathfrak{A}}b_{\mathfrak{A}} \,|\, \Psi \rangle = 2^{-k} \prod_{i=1}^{k < \infty} \mathbf{Tr}(a_{\mathfrak{A}}^{[i]}b_{\mathfrak{A}}^{[i]}) = 2^{-k} \prod_{i=1}^{k < \infty} \mathbf{Tr}(b_{\mathfrak{A}}^{[i]}a_{\mathfrak{A}}^{[i]}) \\ &= \langle \Psi \,|\, b_{\mathfrak{A}}a_{\mathfrak{A}} \,|\, \Psi \rangle = F(b_{\mathfrak{A}}a_{\mathfrak{A}}) \end{split}$$

- Since elements $a_{\mathfrak{A}}, b_{\mathfrak{A}}$ of the form considered are dense in \mathfrak{A} , $F(a_{\mathfrak{A}}b_{\mathfrak{A}}) = F(b_{\mathfrak{A}}a_{\mathfrak{A}})$ exists for any $a_{\mathfrak{A}}, b_{\mathfrak{A}} \in \mathfrak{A}$.
- So $F(a_{\mathfrak{A}}) = \langle \Psi | a_{\mathfrak{A}} | \Psi \rangle$ defines a trace on \mathfrak{A} , we denote it as $\mathbf{Tr}(a_{\mathfrak{A}})$.
- Because Ψ is separating for \mathfrak{A} , any nonzero $a_{\mathfrak{A}} \in \mathfrak{A}$ satisfies $a_{\mathfrak{A}} |\Psi\rangle \neq 0$ and hence $F(a_{\mathfrak{A}}^{\dagger}a_{\mathfrak{A}}) > 0$.

- In the case of a type I_∞ algebra, one can define a trace on a subalgebra but the trace of the identity element is infinite.
- By contrast, a hyperfinite type II_1 algebra has a trace that is defined on the whole algebra, and which we have normalized so that $Tr(1_{\mathfrak{A}}) = 1$.

III. Algebras of type II

- The entanglement entropy in the state $\Psi.$

III. Algebras of type II

- The entanglement entropy in the state $\boldsymbol{\Psi}.$

$$\mathcal{S}_{\Psi} = -\operatorname{Tr}_{\mathfrak{A}}\left(\rho_{\mathfrak{A}}\log\rho_{\mathfrak{A}}\right) = -\sum_{k=1}^{\infty}\operatorname{Tr}_{\mathfrak{A}^{[k]}}\left(\rho_{\mathfrak{A}^{[k]}}\log\rho_{\mathfrak{A}^{[k]}}\right)$$

III. Algebras of type II

- The entanglement entropy in the state $\Psi.$

$$\mathcal{S}_{\Psi} = -\mathbf{Tr}_{\mathfrak{A}} \left(\rho_{\mathfrak{A}} \log \rho_{\mathfrak{A}} \right) = -\sum_{k=1}^{\infty} \mathbf{Tr}_{\mathfrak{A}^{[k]}} \left(\rho_{\mathfrak{A}^{[k]}} \log \rho_{\mathfrak{A}^{[k]}} \right)$$
$$= -\sum_{k=1}^{\infty} \mathbf{Tr} \left(\begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} \log \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} \right) = \sum_{k=1}^{\infty} \log 2 = \infty$$

III. Algebras of type II

- The entanglement entropy in the state $\Psi.$

$$\mathcal{S}_{\Psi} = -\mathbf{Tr}_{\mathfrak{A}} \left(\rho_{\mathfrak{A}} \log \rho_{\mathfrak{A}} \right) = -\sum_{k=1}^{\infty} \mathbf{Tr}_{\mathfrak{A}^{[k]}} \left(\rho_{\mathfrak{A}^{[k]}} \log \rho_{\mathfrak{A}^{[k]}} \right)$$
$$= -\sum_{k=1}^{\infty} \mathbf{Tr} \left(\begin{pmatrix} 1/2 & 0\\ 0 & 1/2 \end{pmatrix} \log \begin{pmatrix} 1/2 & 0\\ 0 & 1/2 \end{pmatrix} \right) = \sum_{k=1}^{\infty} \log 2 = \infty$$

- The divergence is due to the fact that each factor of $\mathbf{1}_{2\times 2}'$ represents a perfectly entangled qubit pair shared between \mathfrak{A} and $\mathfrak{B}.$
- Replacing Ψ by another state in ℋ will only change the entanglement entropy by a finite or at least less divergent amount. Because there are always infinite 1'_{2×2} factors in a state by definition.

III. Algebras of type II

- The entanglement entropy in the state $\Psi.$

$$\mathcal{S}_{\Psi} = -\mathbf{Tr}_{\mathfrak{A}} \left(\rho_{\mathfrak{A}} \log \rho_{\mathfrak{A}} \right) = -\sum_{k=1}^{\infty} \mathbf{Tr}_{\mathfrak{A}^{[k]}} \left(\rho_{\mathfrak{A}^{[k]}} \log \rho_{\mathfrak{A}^{[k]}} \right)$$
$$= -\sum_{k=1}^{\infty} \mathbf{Tr} \left(\begin{pmatrix} 1/2 & 0\\ 0 & 1/2 \end{pmatrix} \log \begin{pmatrix} 1/2 & 0\\ 0 & 1/2 \end{pmatrix} \right) = \sum_{k=1}^{\infty} \log 2 = \infty$$

 So the leading divergence in the entanglement entropy in a hyperfinite type II₁ algebra is universal, as in quantum field theory.

- Another fundamental fact more of less equivalent to the universal divergence in the entanglement entropy — is that the type II₁ algebra A has no irreducible representation!
- By construction, \mathfrak{A} acts on \mathscr{H} . But this is far from irreducible as it commutes with the action of \mathfrak{B} on the same Hilbert space.

III. Algebras of type II

One may make a smaller representation of A by projecting *H* onto a invariant subspace by setting J₂ and considering the element of B as following:

III. Algebras of type II

One may make a smaller representation of A by projecting *H* onto a invariant subspace by setting J₂ and considering the element of B as following:

$$J_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

III. Algebras of type II

One may make a smaller representation of \mathfrak{A} by projecting \mathscr{H} onto a invariant subspace by setting J_2 and considering the element of \mathfrak{B} as following:

$$J_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Pi'_{k} = J_{2} \otimes J_{2} \otimes \cdots \otimes J_{2} \otimes \mathbf{1}_{2 \times 2} \otimes \mathbf{1}_{2 \times 2} \cdots$$

first k terms

III. Algebras of type II

One may make a smaller representation of \mathfrak{A} by projecting \mathscr{H} onto a invariant subspace by setting J_2 and considering the element of \mathfrak{B} as following:

$$J_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Pi'_{k} = \underbrace{J_{2} \otimes J_{2} \otimes \cdots \otimes J_{2} \otimes \mathbf{1}_{2 \times 2} \otimes \mathbf{1}_{2 \times 2} \otimes \mathbf{1}_{2 \times 2} \cdots}_{\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$$

first k terms

 $\mathbf{Tr}(\Pi'_k) = \langle \Psi \,|\, J_2 \otimes J_2 \otimes \cdots \otimes J_2 \otimes \mathbf{1}_{2 \times 2} \otimes \mathbf{1}_{2 \times 2} \cdots \,|\, \Psi \rangle = 2^{-k}$

- Because $\Pi_k^{'2} = \Pi_k^{'}$, it is a projection operator.
- The subspace $\mathcal{H}\Pi'_k \subset \mathcal{H}$ is a representation of \mathfrak{A} .
- In a sense that was made precisely by Murray and von Neumann, it is smaller than *H* by a factor of 2^k.
- Unfortunately, it is also (infinitely) far away from an irreducible representation.

- Because $\Pi_k^{'2} = \Pi_k'$, it is a projection operator.
- The subspace $\mathscr{H}\Pi'_k \subset \mathscr{H}$ is a representation of \mathfrak{A} .
- In a sense that was made precisely by Murray and von Neumann, it is smaller than \mathscr{H} by a factor of 2^k .
- Unfortunately, it is also (infinitely) far away from an irreducible representation.

$$\Pi'_k: \ v^{[1]} \otimes \cdots \otimes v^{[k]} \otimes v^{[k+1]} \otimes \cdots \otimes v^{[n]} \otimes \cdots \mapsto$$

- Because $\Pi_k^{'2} = \Pi_k'$, it is a projection operator.
- The subspace $\mathscr{H}\Pi'_k \subset \mathscr{H}$ is a representation of \mathfrak{A} .
- In a sense that was made precisely by Murray and von Neumann, it is smaller than \mathcal{H} by a factor of 2^k .
- Unfortunately, it is also (infinitely) far away from an irreducible representation.

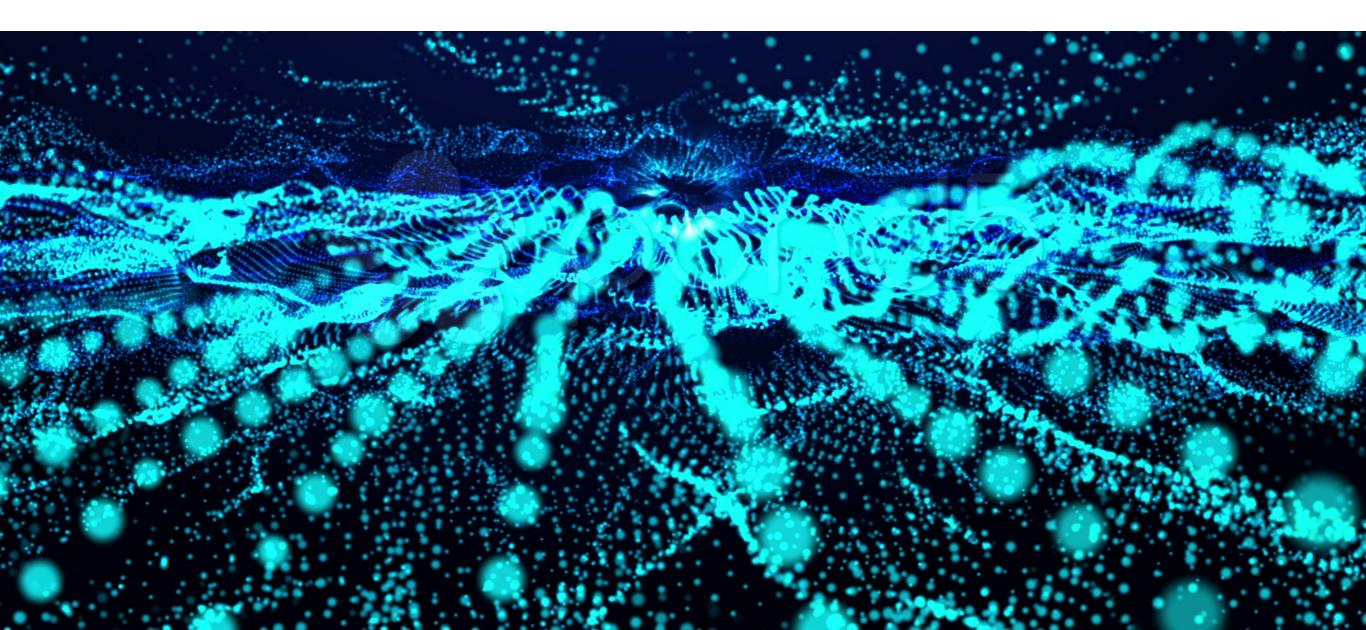
$$\begin{aligned} \Pi'_k: \ v^{[1]}\otimes \cdots \otimes v^{[k]}\otimes v^{[k+1]}\otimes \cdots \otimes v^{[n]}\otimes \cdots \mapsto \\ \begin{pmatrix} v^{[1]}_{11} & 0 \\ v^{[1]}_{21} & 0 \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} v^{[k]}_{11} & 0 \\ v^{[k]}_{21} & 0 \end{pmatrix} \otimes v^{[k+1]}\otimes \cdots \otimes v^{[n]}\otimes \cdots \end{aligned}$$

- The type II_1 algebra we have considered have some properties in common with local algebras in quantum field theory.
- They both have a universal divergence in the entanglement entropy and do not have any irreducible representation.

- The type II_1 algebra we have considered have some properties in common with local algebras in quantum field theory.
- They both have a universal divergence in the entanglement entropy and do not have any irreducible representation.
- But the local algebras in quantum field theory are not type II₁ algebras, because they do not possess a trace!

IV. Algebras of type III

• More general algebras can be constructed by proceeding similarly, but with reduced entanglement.



- More general algebras can be constructed by proceeding similarly, but with reduced entanglement.
- One replaces the maximal entanglement limit element $\mathbf{1}'_{2\times 2}$ with $K_{2,\lambda}$, a pair of qubits with nonzero but nonmaximal entanglement.

$$K_{2,\lambda} = \frac{1}{\sqrt{1+\lambda}} \begin{pmatrix} 1 & 0\\ 0 & \sqrt{\lambda} \end{pmatrix}, \quad 0 < \lambda < 1$$

- Then one can define the Hilbert space \mathscr{H}_{λ} and the algebra \mathfrak{A}_{λ} similarly to the type \mathbf{II}_1 case. \mathfrak{A}_{λ} is different from \mathfrak{A} because \mathscr{H}_{λ} is different from \mathscr{H} .
- The definition of \mathfrak{B}_{λ} is also similar to \mathfrak{B} , and $\Psi_{\lambda} = K_{2,\lambda} \otimes K_{2,\lambda} \otimes \cdots$ is again a cyclic and separating element for both \mathfrak{A}_{λ} and \mathfrak{B}_{λ} .
- Unfortunately, the linear function $F(a_{\mathfrak{A}_{\lambda}}) = \langle \Psi_{\lambda} | a_{\mathfrak{A}_{\lambda}} | \Psi_{\lambda} \rangle$ does not satisfy $F(a_{\mathfrak{A}_{\lambda}} b_{\mathfrak{A}_{\lambda}}) = F(b_{\mathfrak{A}_{\lambda}} a_{\mathfrak{A}_{\lambda}})$, so it is not a trace.

- Then one can define the Hilbert space \mathscr{H}_{λ} and the algebra \mathfrak{A}_{λ} similarly to the type \mathbf{II}_1 case. \mathfrak{A}_{λ} is different from \mathfrak{A} because \mathscr{H}_{λ} is different from \mathscr{H} .
- The definition of \mathfrak{B}_{λ} is also similar to \mathfrak{B} , and $\Psi_{\lambda} = K_{2,\lambda} \otimes K_{2,\lambda} \otimes \cdots$ is again a cyclic and separating element for both \mathfrak{A}_{λ} and \mathfrak{B}_{λ} .
- Unfortunately, the linear function $F(a_{\mathfrak{A}_{\lambda}}) = \langle \Psi_{\lambda} | a_{\mathfrak{A}_{\lambda}} | \Psi_{\lambda} \rangle$ does not satisfy $F(a_{\mathfrak{A}_{\lambda}}b_{\mathfrak{A}_{\lambda}}) = F(b_{\mathfrak{A}_{\lambda}}a_{\mathfrak{A}_{\lambda}})$, so it is not a trace. $F(a_{\mathfrak{A}_{\lambda}}b_{\mathfrak{A}_{\lambda}}) = \langle \Psi_{\lambda} | a_{\mathfrak{A}_{\lambda}}b_{\mathfrak{A}_{\lambda}} | \Psi_{\lambda} \rangle = \prod_{i=1}^{k < \infty} \operatorname{Tr}(a_{\mathfrak{A}_{\lambda}}^{[i]}b_{\mathfrak{A}_{\lambda}}^{[i]}K_{2,\lambda}^{2}) \neq \prod_{i=1}^{k < \infty} \operatorname{Tr}(b_{\mathfrak{A}_{\lambda}}^{[i]}a_{\mathfrak{A}_{\lambda}}^{[i]}K_{2,\lambda}^{2})$

- Then one can define the Hilbert space \mathscr{H}_{λ} and the algebra \mathfrak{A}_{λ} similarly to the type \mathbf{II}_1 case. \mathfrak{A}_{λ} is different from \mathfrak{A} because \mathscr{H}_{λ} is different from \mathscr{H} .
- The definition of \mathfrak{B}_{λ} is also similar to \mathfrak{B} , and $\Psi_{\lambda} = K_{2,\lambda} \otimes K_{2,\lambda} \otimes \cdots$ is again a cyclic and separating element for both \mathfrak{A}_{λ} and \mathfrak{B}_{λ} .
- Unfortunately, the linear function $F(a_{\mathfrak{A}_{\lambda}}) = \langle \Psi_{\lambda} | a_{\mathfrak{A}_{\lambda}} | \Psi_{\lambda} \rangle$ does not satisfy $F(a_{\mathfrak{A}_{\lambda}}b_{\mathfrak{A}_{\lambda}}) = F(b_{\mathfrak{A}_{\lambda}}a_{\mathfrak{A}_{\lambda}})$, so it is not a trace. $F(a_{\mathfrak{A}_{\lambda}}b_{\mathfrak{A}_{\lambda}}) = \langle \Psi_{\lambda} | a_{\mathfrak{A}_{\lambda}}b_{\mathfrak{A}_{\lambda}} | \Psi_{\lambda} \rangle = \prod_{i=1}^{k<\infty} \operatorname{Tr}(a_{\mathfrak{A}_{\lambda}}^{[i]}b_{\mathfrak{A}_{\lambda}}^{[i]}K_{2,\lambda}^{2}) \neq \prod_{i=1}^{k<\infty} \operatorname{Tr}(b_{\mathfrak{A}_{\lambda}}^{[i]}a_{\mathfrak{A}_{\lambda}}^{[i]}K_{2,\lambda}^{2})$ $= \langle \Psi_{\lambda} | b_{\mathfrak{A}_{\lambda}}a_{\mathfrak{A}_{\lambda}} | \Psi_{\lambda} \rangle = F(b_{\mathfrak{A}_{\lambda}}a_{\mathfrak{A}_{\lambda}})$

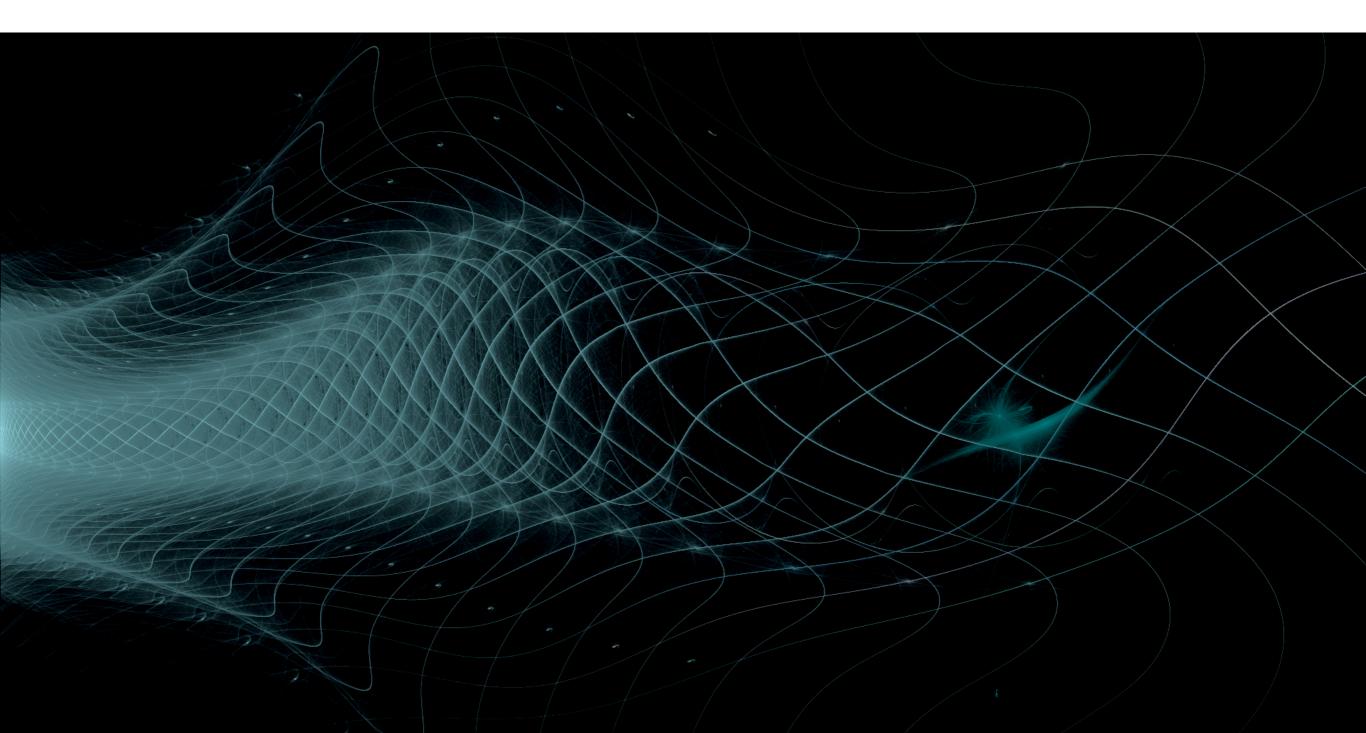
- Then one can define the Hilbert space \mathscr{H}_{λ} and the algebra \mathfrak{A}_{λ} similarly to the type \mathbf{II}_1 case. \mathfrak{A}_{λ} is different from \mathfrak{A} because \mathscr{H}_{λ} is different from \mathscr{H} .
- The definition of \mathfrak{B}_{λ} is also similar to \mathfrak{B} , and $\Psi_{\lambda} = K_{2,\lambda} \otimes K_{2,\lambda} \otimes \cdots$ is again a cyclic and separating element for both \mathfrak{A}_{λ} and \mathfrak{B}_{λ} .
- Unfortunately, the linear function $F(a_{\mathfrak{A}_{\lambda}}) = \langle \Psi_{\lambda} | a_{\mathfrak{A}_{\lambda}} | \Psi_{\lambda} \rangle$ does not satisfy $F(a_{\mathfrak{A}_{\lambda}} b_{\mathfrak{A}_{\lambda}}) = F(b_{\mathfrak{A}_{\lambda}} a_{\mathfrak{A}_{\lambda}})$, so it is not a trace.
- Indeed the algebra \mathfrak{A}_{λ} does not admit a trace.

- The entanglement entropy in the state Ψ_{λ} is divergent, because it describes an infinite collection of qubit pairs each with the same entanglement.
- Any state in \mathscr{H}_{λ} has the same universal leading divergence in the entanglement entropy.
- The action of \mathfrak{A}_{λ} on \mathscr{H}_{λ} is again far away from irreducible.
- However, although we will not prove it, the invariant subspaces in which ℋ_λ can be decomposed are isomorphic as representations of 𝔄_λ to ℋ_λ itself: a hyperfinite von Neumann algebra of type III has only one nontrivial representation, up to isomorphism.

- For $\lambda \neq \tilde{\lambda}$, \mathfrak{A}_{λ} and $\mathfrak{A}_{\tilde{\lambda}}$ are nonisomorphic.
- Other cases?

- We have seen the infinite entanglement chain with fixed λ = 1 (maximal entanglement, type II₁) and fixed 0 < λ < 1 (nonmaximal entanglement, type III).
- Given a sequence $\{\lambda_n\}, 0 < \lambda_n \leq 1$, and consider the algebra $\mathfrak{A}_{\vec{\lambda}}$ acts on the left of the Hilbert space $\mathscr{H}_{\vec{\lambda}}$ completed from the vectors $v_1 \otimes v_2 \otimes \cdots \otimes v_n \otimes \cdots$ such that $v_n = K_{2,\lambda_n}$ for all but finitely many *n*.
- The vector $\Psi_{\vec{\lambda}} = K_{2,\lambda_1} \otimes K_{2,\lambda_2} \otimes \cdots \otimes K_{2,\lambda_n} \otimes \cdots$ is again a cyclic and separating vector for $\mathfrak{A}_{\vec{\lambda}}$ and $\mathfrak{A}'_{\vec{\lambda}} = \mathfrak{B}_{\vec{\lambda}}$.
- The expectation $\langle \Psi_{\vec{\lambda}} | a | \Psi_{\vec{\lambda}} \rangle$ is not a trace unless the λ_i are all 1.

- There are some cases as following:
 - 1. $\lim \lambda_n \to \lambda$, $0 < \lambda < 1$: this gives the type **III**_{λ} algebra as before;
 - 2. $\lim \lambda_n \to 0$: if the convergence is fast enough, this gives the type I_{∞} algebra; if the convergence is not fast enough, this gives a new algebra defined to be of type III_0 ;
 - 3. $\{\lambda_n\}$ does not converge and has at least two limit points in (0, 1): this is a new algebra defined to be of type **III**₁.



- Conclusion: the local algebras $\mathfrak{A}(\mathscr{U})$ in quantum field theory are of type III, because they do not have a trace.
- They are believed to be of type III₁.
- The aim of this subsection is to give a somewhat heuristic explanation of this statement by using the spectrum of the modular operator to distinguish the different algebras.

- The basic block of the infinite type **III** algebras are the bipartite system *V* with a pair algebras *M*_A and *M*_B acting on the left and right on *V*.
- Let us consider the cyclic and separating vector $K_{2,\lambda}$ for M_A and M_B ,

- The basic block of the infinite type **III** algebras are the bipartite system *V* with a pair algebras *M*_A and *M*_B acting on the left and right on *V*.
- Let us consider the cyclic and separating vector $K_{2,\lambda}$ for M_A and M_B ,

$$K_{2,\lambda} = \frac{1}{\sqrt{1+\lambda}} \begin{pmatrix} 1 & 0\\ 0 & \sqrt{\lambda} \end{pmatrix}, \quad 0 < \lambda < 1$$

- The basic block of the infinite type **III** algebras are the bipartite system *V* with a pair algebras *M*_A and *M*_B acting on the left and right on *V*.
- Let us consider the cyclic and separating vector $K_{2,\lambda}$ for M_A and M_B ,

$$K_{2,\lambda} = \frac{1}{\sqrt{1+\lambda}} \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{\lambda} \end{pmatrix}, \quad 0 < \lambda < 1$$
$$\rho_A = \mathbf{Tr}_B |K_{2,\lambda}\rangle \langle K_{2,\lambda}| = K_{2,\lambda} K_{2,\lambda}^{\dagger} = \frac{1}{1+\lambda} \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$$

- The basic block of the infinite type **III** algebras are the bipartite system *V* with a pair algebras *M*_A and *M*_B acting on the left and right on *V*.
- Let us consider the cyclic and separating vector $K_{2,\lambda}$ for M_A and M_B ,

$$K_{2,\lambda} = \frac{1}{\sqrt{1+\lambda}} \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{\lambda} \end{pmatrix}, \quad 0 < \lambda < 1$$

$$\rho_A = \mathbf{Tr}_B | K_{2,\lambda} \rangle \langle K_{2,\lambda} | = K_{2,\lambda} K_{2,\lambda}^{\dagger} = \frac{1}{1+\lambda} \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$$

$$\rho_B = \mathbf{Tr}_A | K_{2,\lambda} \rangle \langle K_{2,\lambda} | = K_{2,\lambda}^{\dagger} K_{2,\lambda} = \frac{1}{1+\lambda} \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$$

V. Back to quantum field theory

• The modular operator Δ_{Ψ} acts on a 2×2 matrix $x \in V$ by

V. Back to quantum field theory

• The modular operator Δ_{Ψ} acts on a 2×2 matrix $x \in V$ by

 $\Delta_{\Psi}(x) = \rho_A x (\rho_B^T)^{-1}$

V. Back to quantum field theory

• The modular operator Δ_{Ψ} acts on a 2×2 matrix $x \in V$ by

$$\Delta_{\Psi}(x) = \rho_A x (\rho_B^T)^{-1}$$

$$\Delta_{\Psi}(x) = \rho_A x (\rho_B^T)^{-1} = kx \implies \begin{pmatrix} x_{11} & \lambda^{-1} x_{12} \\ \lambda x_{21} & x_{22} \end{pmatrix} = k \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$$

V. Back to quantum field theory

• The modular operator Δ_{Ψ} acts on a 2×2 matrix $x \in V$ by

$$\Delta_{\Psi}(x) = \rho_A x (\rho_B^T)^{-1}$$

$$\Delta_{\Psi}(x) = \rho_A x (\rho_B^T)^{-1} = kx \implies \begin{pmatrix} x_{11} & \lambda^{-1} x_{12} \\ \lambda x_{21} & x_{22} \end{pmatrix} = k \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$$
$$\Rightarrow \begin{cases} k = 1 & x_{12} = x_{21} = 0 \\ k = \lambda & x_{11} = x_{22} = x_{12} = 0 \\ k = \lambda^{-1} & x_{11} = x_{22} = x_{21} = 0 \end{cases}$$

V. Back to quantum field theory

• The modular operator Δ_{Ψ} acts on a 2 × 2 matrix $x \in V$ by

$$\Delta_{\Psi}(x) = \rho_A x (\rho_B^T)^{-1}$$

• The eigenvalues of this linear transformation is

$$\begin{aligned} \Delta_{\Psi}(x) &= \rho_A x (\rho_B^T)^{-1} = kx \implies \begin{pmatrix} x_{11} & \lambda^{-1} x_{12} \\ \lambda x_{21} & x_{22} \end{pmatrix} = k \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \\ \Rightarrow \begin{cases} k = 1 & x_{12} = x_{21} = 0 \\ k = \lambda & x_{11} = x_{22} = x_{12} = 0 \\ k = \lambda^{-1} & x_{11} = x_{22} = x_{21} = 0 \end{aligned}$$

V. Back to quantum field theory

• The modular operator Δ_{Ψ} acts on a 2 × 2 matrix $x \in V$ by

- The eigenvalues of this linear transformation is 1, λ , λ^{-1} .
- In fact, Δ_{Ψ} is diagonalized.

V. Back to quantum field theory

• The modular operator Δ_{Ψ} acts on a 2 × 2 matrix $x \in V$ by

$$\Delta_{\Psi}(x) = \rho_A x (\rho_B^T)^{-1}$$

- The eigenvalues of this linear transformation is 1, λ , λ^{-1} .
- In fact, Δ_{Ψ} is diagonalized.

V. Back to quantum field theory

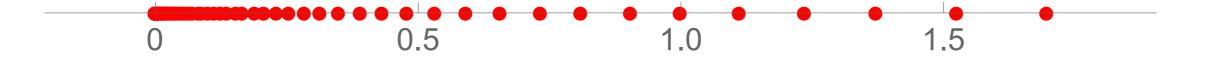
• The modular operator Δ_{Ψ} acts on a 2 × 2 matrix $x \in V$ by

$$\Delta_{\Psi}(x) = \rho_A x (\rho_B^T)^{-1}$$

- The eigenvalues of this linear transformation is 1, λ , λ^{-1} .
- In fact, Δ_{Ψ} is diagonalized.
- The whole Hilbert space \mathscr{H}_{λ} is an infinite tensor product of the bipartite system.
- So the eigenvalues of Δ_Ψ are all integer powers of λ, each occurring infinitely often.

V. Back to quantum field theory

• The accumulation points of the eigenvalues are $\{0\} \cup \{\lambda^n | n \in \mathbb{Z}\}.$



- $\Psi_{\vec{\lambda}} = K_{2,\lambda_1} \otimes K_{2,\lambda_2} \otimes \cdots \otimes K_{2,\lambda_n} \otimes \cdots$ is cyclic separating for \mathfrak{A}_{λ} if the $\{\lambda_n\}$ approach λ sufficiently fast.
- The spectrum of $\Delta_{\Psi_{\vec{\lambda}}}$ is more complicated, but 0 and the integer powers of λ are still accumulation points.
- Still more generally, in the case of a type \mathbf{III}_{λ} algebra, for any cyclic separating vector Ψ , not necessarily of the form $\Psi_{\vec{\lambda}}$, the integer powers of λ and 0 are accumulation points of the eigenvalues.

- For type III₀ algebra, $\lim \lambda_n \to 0$, so the only unavoidable accumulation points of the eigenvalues of $\Delta_{\Psi_{\vec{\tau}}}$ are 0 and 1.
- These values continue to be accumulation points if $\Psi_{\vec{\lambda}}$ is replaced by any cyclic separating vector of a type III₀ algebra.

- Type III₁ algebra ($\{\lambda_n\}$ has more than one limit points):
 - Suppose λ_n take two values λ and $\tilde{\lambda}$, each for infinite times;
 - The eigenvalues of $\Delta_{\Psi_{\vec{\lambda}}}$ consist of the numbers $\lambda^n \tilde{\lambda}^m$ ($m, n \in \mathbb{Z}$), each value occurring infinitely many times;
 - If there is a $0 < \lambda' < 1$ s.t. $\lambda = \lambda^{'a}$, $\tilde{\lambda} = \lambda^{'b}$ ($a, b \in \mathbb{Z}$), then the algebra is in fact a type $\mathbf{III}_{\lambda'}$ algebra;
 - Otherwise, any non-negative real number is an accumulation point of the eigenvalues of the operator $\Delta_{\Psi_{\vec{\tau}}}$.

V. Back to quantum field theory

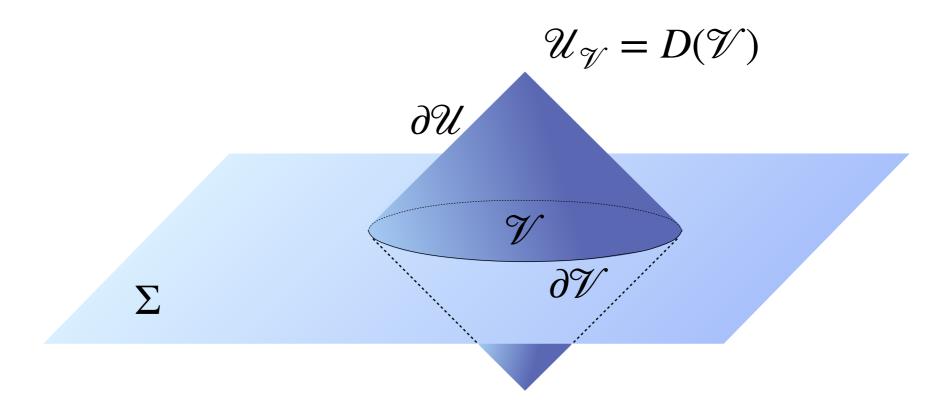
- Type III₁ algebra ({ λ_n } has more than one limit points):
 - For any cyclic separating vector Ψ , the spectrum of Δ_{Ψ} (including accumulation points of eigenvalues) comprises the full semi-infinite interval $[0, +\infty)$.

- $(0.9^n \times 0.8^m, n, m \in \mathbb{Z}, -100 \le n, m \le 100)$

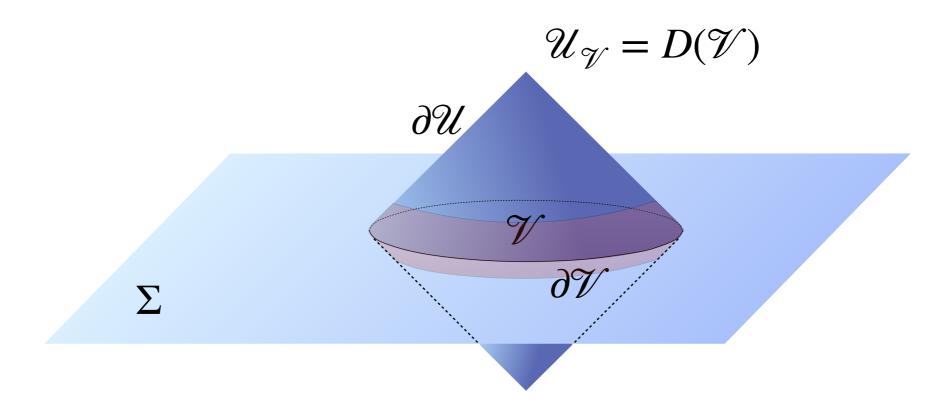
- Quantum field theory:
 - Consider the wedge region \mathscr{U} and the cyclic separating vector Ω , the modular operator is $\Delta_{\Omega} = \exp(-2\pi K)$.
 - The boost generator *K* has a continuous spectrum consisting of all real numbers, so Δ_{Ω} has a continuous spectrum $[0, +\infty)$ consisting of all positive numbers.
 - At short distances, any state is indistinguishable from the vacuum.
 - So we would expect that acting on excitations of very short wavelength, Δ_{Ψ} can be approximated by Δ_{Ω} and therefore has all points in $[0, +\infty)$ in its spectrum.

- Quantum field theory:
 - The algebra $\mathfrak{A}(\mathscr{U})$ is of type \mathbf{III}_1 .

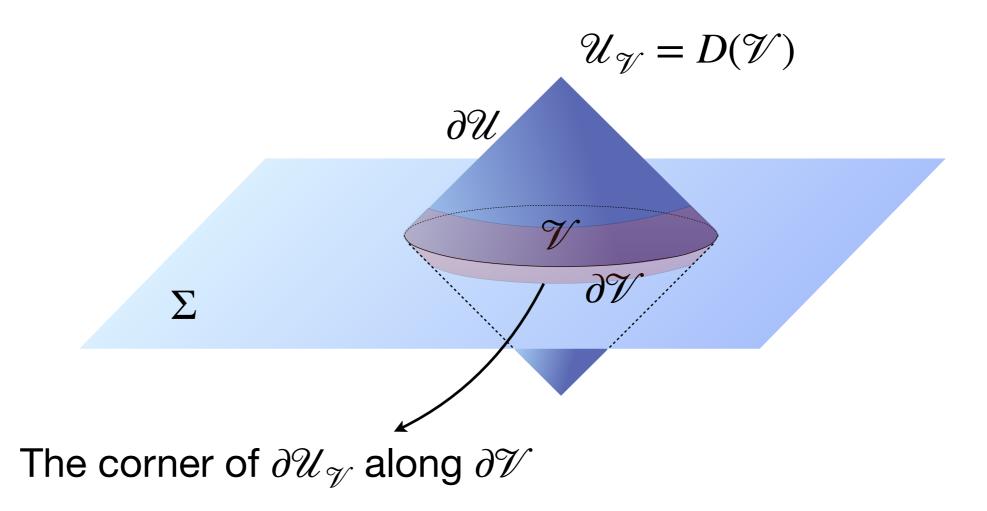
- Quantum field theory:
 - The algebra $\mathfrak{A}(\mathscr{U})$ is of type \mathbf{III}_1 .



- Quantum field theory:
 - The algebra $\mathfrak{A}(\mathscr{U})$ is of type \mathbf{III}_1 .



- Quantum field theory:
 - The algebra $\mathfrak{A}(\mathscr{U})$ is of type \mathbf{III}_1 .



- Quantum field theory:
 - Consider very high energy excitations localized near the corner
 - For these modes, $\mathscr{U}_{\mathscr{V}}$ looks like the wedge region \mathscr{U}
 - So one would expect that for such high energy excitations, $\Delta_\Omega(\mathscr{U}_{\mathscr{V}})$ looks like the Lorentz boost generators and has all positive real numbers in its spectrum

