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THE REEH-SCHLIEDER THEOREM

. Statement

e Starting point: Consider a QFT in D-dimensional Minkowski
spacetime 4, let # is the vacuum sector of the vacuum state

Q2 in the whole Hilbert space #7.

e ¢(x)is quantum field (need not to be elementary), then the states
|‘P]?) = p by | Q) (¢ = "def(x)qb(x)) are dense in Z,.



THE REEH-SCHLIEDER THEOREM

. Statement

« Choosing smooth functions f; supported in a small neighborhood
of a Cauchy surface %,

supp f,={xe Mp|f(x) #0} C 2, = {xeﬂD min |x° — 20| <e}

7EX

« The states |‘Pf) = ¢p - ¢y | Q) also span a dense subspace of
Z -

e This is a quantum theory version of the
completeness of the initial value
problem (Cauchy problem).

 We won’t prove it but a stronger result.




THE REEH-SCHLIEDER THEOREM

. Statement

* The Reeh-Schlieder theorem (1961, “Bemerkungen zur
unitdraquivalenz von lorentzinvarianten feldern”, Nuovo Cimento

22 1051-1068):

?

Siegfried Schlieder Helut Reeh
(1918-2003)


https://link.springer.com/content/pdf/10.1007/BF02787889.pdf
https://link.springer.com/content/pdf/10.1007/BF02787889.pdf
https://link.springer.com/content/pdf/10.1007/BF02787889.pdf

THE REEH-SCHLIEDER THEOREM

. Statement

 The Reeh-Schlieder theorem (1961): for any open subset
U C M, the subspace spanned by |‘I’f) = ¢rpy ey | Q), where

supp f; C %, is dense in #Z .
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* Because the Hamiltonian is bounded below by 0, g(u) (as a

function of one complex variable u) is a holomorphic function in
the upper half plane.

* ¢2(u)lis continuous as one approaches the real axis, and vanishes
on a segment I = [—¢, + €] In the real axis.

* |In the upper half plane, we have
x, + €t

g(«f) @%

x, — €t

g(u) =

27:1
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* ¢2(u)is continuous as one approaches the real axis, holomorphic
In the upper half plane, and vanishes on a segment I = [—¢, + €]
In the real axis.
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* ¢2(u)is continuous as one approaches the real axis, holomorphic
In the upper half plane, and vanishes on a segment I = [—¢, + €]
In the real axis.

X + et
1 n
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27i Jr T E—u %
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Il. Proof

 Because g(u) vanishes on a segment I = [—¢, + €] In the real axis,
we can “move” u to I without any singularity. Thus, g(u) is
holomorphic in the upper half plane “plus I”.
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Il. Proof

 Then, define

&) = (x| Pp(x))-P(x,_; + ut)p(x, + ut) | Q)
— <)( | ¢(X1)"'¢(Xn_2)€iHu§b(Xn_l)€_iHueiHu¢(xn)€_iHu | Q)
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Il. Proof

e Then, define
W) = (x| p(x) - p(x,_; + ut)P(x, + ut) | €2)
= (x| p(x)) - P(x,_e™p(x,_ e~ e p(x, )™ | Q)
= (11 d(x) - p(x, e p(x,_Np(x,) | Q)

» Sowhen x, -, x, €U, (x| p(x))-P(x,_)PpX)Pp(x + x, — x,_1) | Q) =0
for any x € /.

« Use the same method, we can first push x,_, (with x, together) to
everywhere in the Minkowski spacetime, and then use the
method again pushing x, alone to any point in the Minkowski
spacetime.

* Sowhen xy, -+, X, € U, (x| p(x)-P(x,_2)Pp(x)p(y) | Q) = O for
any x,y € M p.



THE REEH-SCHLIEDER THEOREM
Il. Proof

* Proof with Wightman function #'(x;, x,, ---, x,) = (Q| p(x))P(xy)---P(x,) | Q)

* There are holomorphic functions W(¢,;, ---,Z,_) In
(&, GG =&—in, & € R4, n; € V., }, which gives

W(éla 529 "t én—l) — lim Ow(él T ir]la 52 _ in2a "t én—l — ir]n—l)
s slly—1—

W (X, Xy, -+, X,) = W(X; — Xp, Xp — X3, 20, X, — X, _{)

» Edge of the Wedge Theorem (“Z2i8EIE”)

» With the Edge of the Wedge Theorem, see “PC1T, Spin and
Statistics, and All That” by R. F. Streater and A. S. Wightman, or

the Chinese translation {PCT, B4t EREM) .



https://press.princeton.edu/books/paperback/9780691070629/pct-spin-and-statistics-and-all-that
https://press.princeton.edu/books/paperback/9780691070629/pct-spin-and-statistics-and-all-that
https://press.princeton.edu/books/paperback/9780691070629/pct-spin-and-statistics-and-all-that
https://press.princeton.edu/books/paperback/9780691070629/pct-spin-and-statistics-and-all-that
mailto:zhanghao@ihep.ac.cn

THE REEH-SCHLIEDER THEOREM

lll. Vectors of bounded energy momentum

 Why vacuum? Only vacuum?

e”MQ) = |Q)
* |nvariance condition is too strong.
 Holomorphic in u is enough for the proof.

* This is not a generic property for arbitrary states in #, because
the operator exp(—ic*P,) is no longer unitary but unbounded

when the spacetime D-vector c# have non-vanished imaginary
part.
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lll. Vectors of bounded energy momentum

* A little about the unbounded operator

 An example: one dimensional harmonic oscillator

* The state H|y) is not normalizable

* (Generic property: an unbounded operator can not be defined on
the whole Hilbert space.
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lll. Vectors of bounded energy momentum

* A little about the unbounded operator

* Eigenvalue problem for unbounded self-adjoint operator: spectral
theorem

A:[ ) I,
o(A)
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lll. Vectors of bounded energy momentum

 As unbounded self-adjoint operator(s), the generators of the
translation action P, have spectral in the future lightcone V!

* This is an assumption of QFT.




THE REEH-SCHLIEDER THEOREM

lll. Vectors of bounded energy momentum

» For compact (so bounded) region S in V_, the state Il | ¥) is a
state on which translation group acts holomorphically.

« Any state |W) can be approximated by a sequence {I | P} in

which each state can be used instead of the vacuum state in the
Reeh-Schlieder theorem.

* These states can be used to get the Reeh-Schlieder theorem in
non-vacuum superselection sector.

E




THE REEH-SCHLIEDER THEOREM

lll. Vectors of bounded energy momentum

|t is non-trivial to generalize the concept of vacuum and the
Reeh-Schlieder theorem to a QFT in generic spacetime.

* For global hyperbolic spacetime and anti-de Sitter spacetime,
there are some results.
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IV. An important corollary

* Causal complement

U ={z€Mp VxeEU x—2)*<0}
%g%//
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IV. An important corollary

e Causality condition in QFT: let @ be any operator supported in the

spacetime region % (not necessarily constructed from a product
of finitely many local operators),

[p(x),a]l =0, xe&
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THE REEH-SCHLIEDER THEOREM

IV. An important corollary

e If & is an supported in the spacetime region % and annihilate the
vacuum, a|Q) =0, then for V x;, ---,x, € %’

a P(xp)p(x,) | Q) = Pp(x))--(x,) a|Q) =0

» The Reeh-Schlieder theorem tells us that ¢(x,)---¢(x,) | Q) are
dense in the vacuum sector.

* Corollary: a = 0 in the vacuum sector.
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IV. An important corollary

 “Local algebra” of quantum field theory
VNUCMy — WU

« A(%) is the algebra generated by the bounded self-adjoint
operators of the observables which can be locally measured in
the spacetime region %.
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IV. An important corollary

* Cyclic vector and separating vector for (%)

o If AU)|Y) = H#, then |W) is called a cyclic vector for A(%).

e If a|¥Y)=0,ac A% = a=0,then |V) is called a separating
vector for A(%).
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IV. An important corollary

o If |W) is a cyclic vector for A(%), and a’ € A(%’) vanishes | V),
then because [a,a’] = 0, a’ vanishes a dense subset of 7, so it
must be ().

« = A cyclic vector for (%) is a separating vector for 2A(%’).
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IV. An important corollary

« State—operator “corresponding”: every |¥) defines a map from
WeU)to X ybyfy: acUAU)— a|¥Y) € Z,.
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IV. An important corollary

o Ifim(fy) = #,, then |¥) is a cyclic vector for A(%).

 If ker(fy) =0, then | V) is a separating vector for A(%).
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IV. An important corollary

* Reeh-Schlieder theoremm = The vacuum state | Q) is both cyclic
and separating vector for local algebra (%) and A(%’) on any
open subset Z of the Minkowski spacetime.
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IV. An important corollary

* An example of non-cyclic vector: (complex fermion field)
. For fe C*(4p), supp f C %, define y; = [de FOw(x).

» Because ;7 = 0, we have y; (y;| ) =0 forany |y).

» So forany |y), v y) can not be separating vector for %.
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IV. An important corollary

* An important corollary: “Nonpositivity of the Energy Density in
Quantized Field Theories”, H. Epstein, V. Glaser, A. Jaffe, Nuovo
Cimento 36 (1965) 1016-1022.

Henri Epstein Vladimir Jurko Glaser Arthur Michael Jaffe
(1924/04/21-1984/01/22) (1937/12/22-)


https://link.springer.com/content/pdf/10.1007/BF02749799.pdf
https://link.springer.com/content/pdf/10.1007/BF02749799.pdf
https://link.springer.com/content/pdf/10.1007/BF02749799.pdf

THE REEH-SCHLIEDER THEOREM

IV. An important corollary

* An important corollary:

* Local observable — Energy momentum
tensor T#(x)

» f T7° (f € C¥(Mp), supp f C % ) vanishes

vacuum, then (because vacuum is a
separating vector TJ?O = 0.

e That is not the case.

» S0 there must be some state | y) in #Z,

(X1 T°1Q) #0
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IV. An important corollary

* An important corollary:
* But the translation symmetry tells us
(QIT®|Q) =0

 So the matrix elements of operator Tj?o in

the 2D subspace spanned by {|y), | )}
are

0 b
b* 2d
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* An important corollary:

* |t is easy to check

100y) = (d—/d>+ 6" ) 1)

W) b g) = (d+y/d + 1617 ) 1Q)
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IV. An important corollary

* An important corollary:

* |t is easy to check

100y) = (d—/d>+ 6" ) 1)

W) b g) = (d+y/d + 1617 ) 1Q)

* The quantum fluctuation could lead to
negative energy density in any finite
spacetime region.
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V. Discussion

* “Behind-the-Moon-argument”

(QIM|Q)~0, MeWA(%,,,,,)

Jda, € A%,,;,), st.a Q) —>M|Q), U, ., CUy,»

=> (Q|aMa, |Q)—>1, .. (Q|Mala |Q)— 1

* The “some operator” a, is not a unitary operator!
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V. Discussion

* “Behind-the-Moon-argument”

 |If one modifies the quantum system with physical operation,
which is realized by Hermitian Hamiltonian and leads to unitary
evolution, it is not possible to make any change in observables In

a spacelike separated region.

(Qla/Ma,|Q) = (Q|Ma,a,|Q) = (Q|M]|Q)
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V. Discussion

* “Behind-the-Moon-argument”

» Correlation vs causality

(Q|Ma'a, |Q) # (Q|M|Q){Q|ala, |Q)

 An example in textbooks — free field propagator

Cr(z.y) = I 1 / e —2-0(s) + #ﬁﬂf” (my/s) s>0
z,y) = lim — = .
FAL:Y) = 210 (2m)4 p p? —m? +ic — 47r2";__8 K1 (m4/—s) s < 0.

B e e ™
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V. Discussion

* Finite-dimensional quantum system

%=%1®%2, dlm%1=dlm%2=n

- A, and A, are the n X n matrices acting on #, and #,,
respectively.

\ (e e e\ (D@1 12)@11) [0y @[1)"
Y=Y el@ly=tr||2 2 T || IO NS - ine )
i,j=1 \Cnl Cpp Cnn) \ 1>® n>/ 2>® n)/ I’l>® n>/)

L N
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V. Discussion

* Finite-dimensional quantum system

g €A, B ey, and i)y =) |j)A; Bli) =) |j)B;, we
j=1

have

(A Q@B =) c(d|iN®RBIj))= Y c;ABs;lk)® )

ij=1

() Cpp
Cr1 Cpp -

\Cnl G2 "

J=1

Cp)

Con

Cnn)

ijkt=1

—~ ACB!

L N
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V. Discussion

* Finite-dimensional quantum system

* Singular value decomposition theorem: any m X n complex matrix
can be factorized as UXV*, where U is an m X m complex unitary
matrix, X is an m X n rectangular diagonal matrix with non-
negative real numbers on the diagonal, and Visann X n
complex unitary matrix.




THE REEH-SCHLIEDER THEOREM

V. Discussion

* Finite-dimensional quantum system

» Corollary (Schmidt decomposition):
for any state W, we can find an
orthonormal basis of 7, and an
orthonormal basis of #,, s.t.

Y=l ® k)
k=1

Erhard Schmidt
(1876/01/13-1959/12/06)

L N
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THE REEH-SCHLIEDER THEOREM

V. Discussion

* Finite-dimensional quantum system

« When will ¥ be a cyclic and separating vector for 2[; and 2,7

i (Cl o ... O\
ww - 40 @ Yaec,,
0 0 - ¢,

« Yis acyclic (separating) vector for 2, (2,)
= rank C=n (¢, -+, ¢, # 0).




THE REEH-SCHLIEDER THEOREM

V. Discussion

* Finite-dimensional quantum system

o |fdimZ| # dim #,, ¥ can not be a cyclic and separating vector
for both 21, and 2I,.

* Technically, the Hilbert space of the state vectors of the QFT can
be factorized into neither %, ® #,,, nor ®, #:, @ I,.

* In QFT, the entanglement entropy between adjacent regions has
a universal UV divergence, independent of the states considered.

L N




THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

* The local algebras (algebraic quantum field theory, AQFT)

Rudolf Haag Daniel Kastler Huzihiro Araki

(1922/08/17-2016/01/05) (1926/03/04-2015/07/04) =N AT5FE

(1932/07/28-)
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 The “local algebra” (%) consists of “all operators” supported in
7% . What does it precisely mean?

1. Simple operators: polynomials in smeared local fields;

2. If % is the domain of dependence of %, then 2[(/?2) = W(%);
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THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

 The “local algebra” (%) consists of “all operators” supported in
7% . What does it precisely mean?

1. Simple operators: polynomials in smeared local fields;

2. Bounded operators made from g/)f;

3. And the “limit” points.

 Why “bounded”?
* Which “limit”?



THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

 Why “bounded”?

* There is a lot of trouble to define an algebra with unbounded
operators.

* An observable measured within finite spacetime region can not
touch the “unbounded” part.



THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

 Which “limit”?
 Weak limit versus strong limit:

- Weak limit: if for V | @), |y) € Z, (p|a,|y) — (¢ |a|y), then

w—lima, =a
n—oo

- Strong limit: if V |y) € #Z, ||la,|y) —a|y)|| — 0, then

lima,=a

n—oo



THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

* The strong limit condition is stronger than the weak limit

condition.

* A strong limit must be a weak limit, and not vice versa.

« A counterexample: a sequence {a,} on #*(C), defined by

an{cl, ."’Ci’ ...} — {O’...’O’ Cl’ ."’Ci’ ...}, then W —

Is obviously that the strong limit does not exist (

n

lim a, = 0. But it

a Zll = lIE).




THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

* The strong limit condition is stronger than the weak limit

condition.

* A strong limit must be a weak limit, and not vice versa.

« A counterexample: a sequence {a,} on #*(C), defined by

an{cl, ."’Ci’ ...} — {O’...’O’ Cl’ ."’Ci’ ...}, then W —

Is obviously that the strong limit does not exist (

a

W

<
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lim a, = 0. But it

a Zll = lIE).




THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

* The strong limit condition is stronger than the weak limit
condition.

* A strong limit must be a weak limit, and not vice versa.

« A counterexample: a sequence {a,} on #*(C), defined by
aic,-,c,}=10,-,0,c,-,c, -}, thenw — lim a, = 0. But it

la 2l = l1ElD).
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* The strong limit condition is stronger than the weak limit
condition.

* A strong limit must be a weak limit, and not vice versa.

« A counterexample: a sequence {a,} on #*(C), defined by
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THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

* The strong limit condition is stronger than the weak limit
condition.

* A strong limit must be a weak limit, and not vice versa.

« A counterexample: a sequence {a,} on #*(C), defined by
aic,-,c,}=10,-,0,c,-,c, -}, thenw — lim a, = 0. But it

la 2l = l1ElD).

Cy\ C———— e @ ......
@ :

0 A

Is obviously that the strong limit does not exist (
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THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

 Many different topologies for operator algebra!

 Norm topology, strong operator topology, strong-*operator
topology, o-strong topology, o-strong-* topology, weak
topology, weak operator topology, weak-*operator topology, ¢

-weak topology, o-weak-" topology...



THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

* Physically, the weak limit seems to be more reasonable, since we
“measure” an operator a by measuring the transition amplitude
(p|a|y) induced by a.

* The “local algebra” (%) consists of “all operators” supported in
7% . What does it precisely mean?

1. Simple operators: polynomials in smeared local fields;
2. Bounded operators made from ¢;;

3. And the “limit” points;

4. Closed under Hermitian conjugate.



THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

e *-algebra: von Neumann algebra (or W*-algebra, weak limit), C*-
algebra (strong limit).

Neumann Janos Lajos Israil Moyseyovich Mark Aronovich
(1903/12/28-1957/02/08) Gel'fand Naimark
(1913/09/02-2009/10/05) (1909/12/05-1978/12/30)
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» Generic properties of von Neumann algebra

* The commutant of A € AB(F)
W={aeABH)|VaeU, [a,a] =0}
2[ g 2[// — (2[/)/

 The commutant 2’ of any *-algebra 2 is a von Neumann algebra
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» Generic properties of von Neumann algebra

* The commutant of A € AB(F)
W={aeABH)|VaeU, [a,a] =0}
2[ g 2[// — (2[/)/

 The commutant 2’ of any *-algebra 2 is a von Neumann algebra
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THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

» Generic properties of von Neumann algebra

* The commutant of A € AB(F)
W={aeABH)|VaeU, [a,a] =0}
2[ g 2[// — (2[/)/

 The commutant 2’ of any *-algebra 2 is a von Neumann algebra

a, €A = [a,a]=0,w—lima,=a" = V|g),|y), lim(g|a,|y) = (p|a’|y)

n—oo n—oo

o {plla,ally) = (plaaly) — (p|aa’|y) = lim ({(p|aa|y) — (p|aa,|y)) =0

S [a,al =0



THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

» Generic properties of von Neumann algebra

* The commutant of A € AB(F)
W={aeABH)|VaeU, [a,a] =0}
2[ g 2[// — (2[/)/

 The commutant 2’ of any *-algebra 2 is a von Neumann algebra



THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

» Generic properties of von Neumann algebra

* The commutant of A € AB(F)
W={aeABH)|VaeU, [a,a] =0}
2[ g 2[// — (2[/)/

 The commutant 2’ of any *-algebra 2 is a von Neumann algebra

 von Neumann’s theorem: if 2l is a von Neumann algebra, then
A =A"



THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

» Causality of the local algebra

[A(%), A(%)] =0, W) € W)




THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

 Haag duality (Haag & Schroer (1962))

Rudolf Haag Bert Schroer
(1922/08/17-2016/01/05) (1933/11/10-)
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V. The Local Algebra
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o If % is the union of % ,, then A(%) is the smallest von Neumann

algebra containing all 2((% ).

» |[f %, and %, are two open sets, then



THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

 Haag duality (Haag & Schroer (1962)): if % and %' are causal
complements, then A(%) = WA(U').

o If % is the union of % ,, then A(%) is the smallest von Neumann
algebra containing all 2((% ).

» |[f %, and %, are two open sets, then

e There are some theories, in 6
which the Haag duality and

the two postulates falil.
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V. The Local Algebra

 Important conclusion: if 2l and 2’ are commutant, then a vector
| Q) € # is separating for 2 iff it is cyclic for A’, and vice versa.

« “=7": we have proved it.

» “&" (contradiction): if |€2) is not cyclic vector for 2, then
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THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

 Important conclusion: if 2l and 2’ are commutant, then a vector
| Q) € # is separating for 2 iff it is cyclic for A’, and vice versa.

« “=7": we have proved it.

o “&" (contradiction): if [€2) is not cyclic vector for A’, then
1|ly) €, |y) #2a'|Q) (a’ e A

So there is orthogonal decomposition # = #+ & A’ | ), and the
(bounded) projective operator I1 : # — '+, 11> =11 # 0.
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| Q) € # is separating for 2 iff it is cyclic for A’, and vice versa.

ly) =1Iy) + (A = 1ID |y)
=1|y) +a,[Q)

[a’|y) = [Ta'll|y) + [1a’a,, | Q)
= I1a'll | y)




THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

 Important conclusion: if 2l and 2’ are commutant, then a vector
| Q) € # is separating for 2 iff it is cyclic for A’, and vice versa.

ly) =1Iy) + (A = 1ID |y)
=1|y) +a,[Q)

[a’|y) = [Ta'll|y) + [1a’a,, | Q)

I y)

a'll|y) = a'll|y) + a'Tla , [ Q)
= a'Tl|y)

[
F
¢
g
~~




THE REEH-SCHLIEDER THEOREM

V. The Local Algebra

 Important conclusion: if 2l and 2’ are commutant, then a vector
| Q) € # is separating for 2 iff it is cyclic for A’, and vice versa.

ly) =1Iy) + (A = 1ID |y)
=1|y) +a,[Q)

[a'|y) =

all|y) = a'l
=a'l

[a'Tl|y) + Ila’a | €2)

/
-‘L-‘ha e

I|y)

[|y)+aTla,|€Q)
Iy) A

If a'll [y) has nonzero component in A’|Q), then 3 b’ € A’
satisfies (2| b aTl|y) # 0, so IT|y) has nonzero component
a'b’| Q) in A'|Q), which is impossible.
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 Important conclusion: if 2l and 2’ are commutant, then a vector
| Q) € # is separating for 2 iff it is cyclic for A’, and vice versa.

- alllly) = a'll|y) = a'll|y) = Ta’|y)

= forva e, [a,Il1]=0
! a1 1| y)

>0#[Ie @A) =2




THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

 Important conclusion: if 2l and 2’ are commutant, then a vector
| Q) € # is separating for 2 iff it is cyclic for A’, and vice versa.

- alllly) = a'll|y) = a'll|y) = Ta’|y)

= forva e, [a,Il1]=0
! a1 1| y)

>0#[Ie @A) =2

So |€2) is not cyclic for A’ = itis

not separating for %I. A
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é‘@
ﬂ ' A *-algebra (%) associates with

the open set % of the spacetime /%,
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V. The Local Algebra

e Conclusion

Local Algebra

A von Neumann algebra A(#%’)
associates with the causal
complement %' of %

Causality: 2(%’) C AU’
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e Conclusion

Local Algebra

%" always contains %, U" = U’
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V. The Local Algebra

e Conclusion

Local Algebra

()" is the smallest von Neumann
algebra contains A(%)

2 is a von Neumann algebra = A = A"
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THE REEH-SCHLIEDER THEOREM
V. The Local Algebra

e Conclusion

Local Algebra

A von Neumann algebra (%)
associates with the causal complete
open set % of the spacetime .#,

Haag duality: (%) = A(%)’



THE REEH-SCHLIEDER THEOREM
Appendix (Hao)

* A Little about Algebraic Quantum Field Theory (AQFT)
e Definition
BB EAE (D AR Z X HK)

1. BifltE (Monotone property): % Dy D Dy, W O(D;) D O(D5),

2. T (Covariance): 3+F g = (a,\) € 921, A a,0(D)=0(gD), H
¥ gD ={Ax+a; v € D},

3. B (Locality) : 4w Dy 5 Dy 2= 51, 4 O(Dy) 5 O(Dy) *F

5 o

4. R (Generating property): UpO(D) & SR AE A L &K #0069 OF R %
A



THE REEH-SCHLIEDER THEOREM
Appendix (Hao)

* A Little about Algebraic Quantum Field Theory (AQFT)

* Gelfand-Naimark-Segal representation

T 2.18
FF CF K& A EEE—AS ¢, ARG E—A Hilbert =8 J7,, A &
I, Loj—/ANFTF 1, Fo I, P —NEL KT Q,, HEIe T HAFTAH:

1. sfFF4e&65 A
0(A) = (Qp, To(A)D). (2.36)

2. O, &7 7, G—MNMEILRKRE (cyclic vector), HzkAHL
T, = {r,(A)0,; A}

B I, FRAAE



THE REEH-SCHLIEDER THEOREM
Appendix (Hao)

* A Little about Algebraic Quantum Field Theory (AQFT)

* Gelfand-Naimark-Segal representation

it R G0 W (I, Ty, ), VEA L EFMEEZE—8, A, R
H1e 5 —Asw Hilbert = ) 527 2 & ) Loy x5 n), fo ] FHIRE Q) 4
MG Z T, HAEME (1) F= (2), N—EHFEHLT

Ur,(A) =7 (AU (A TE AcA) (2.37)

)
UQ, =,
BN S, B ) B L B U



THE REEH-SCHLIEDER THEOREM
Appendix (Hao)

* A Little about Algebraic Quantum Field Theory (AQFT)

* Gelfand-Naimark-Segal representation

Israil Moyseyovich Mark Aronovich Irving Ezra Segal
Gel'fand Naimark (1918/09/13-1998/08/30)

(1913/09/02-2009/10/05) (1909/12/05-1978/12/30)
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THE MODULAR OPERATOR AND RELATIVE
ENTROPY IN QUANTUM FIELD THEOTY

l. Definition and first properties

« Tomita-Takesaki theory (£ B-1TIFE 18, 1967-1970)

L
Yy

/
-8 A_,!
1

Minoru Tomita Masamichi Takesaki

=2H TTlE 1E1E

(1924/02/06-2015/10/09) (1933/07/18-)



THE MODULAR OPERATOR AND RELATIVE
ENTROPY IN QUANTUM FIELD THEOTY

l. Definition and first properties

* The Tomita operator:

let | ) be a cyclic and separating vector (e.g., the vacuum
vector) for the local observable algebra (%) and its commutant
A7), the Tomita operator for |W) is an antilinear operator Sy
defined by

Sy (a|P)) = a’ | P)

for Va e A(%).
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THE MODULAR OPERATOR AND RELATIVE
ENTROPY IN QUANTUM FIELD THEOTY

l. Definition and first properties

* The Tomita operator

1.

2.

V) is separating = Syg|0) = 0, the definition is consistent

¥) is cyclic = Sy is defined on a dense subset of #

3. (Closable) Fora, |¥) — x, a, € A(%), ifa’ | ¥) — y exists, we can

extend the Tomita operator with Syx = y.

4. Sia|P)) = Su(Sy(a|P))) = Sy’ |¥) =a|¥P) => Sg=1

5. Syl W) = |¥)

Sy (a|¥)) =a’|¥)




THE MODULAR OPERATOR AND RELATIVE
ENTROPY IN QUANTUM FIELD THEOTY

l. Definition and first properties
* The Tomita operator

1. |W)is separating = Sy |0) = 0, the definition is consistent

2. |¥)iscyclic = Sy is defined on a dense subset of #Z

3. (Closable) Fora, |¥) — x, a, € A(%), ifa’ | ¥) — y exists, we can
extend the Tomita operator with Syx = y.

4. Sia|P)) = Su(Sy(a|P))) = Sy’ |¥) =a|¥P) => Sg=1

5. Syl W) = |¥)

WARNING: | use the notation | Q) for the zero vector in the Hilbert space,
and | Q) for the vacuum vector. They are completely different concept.

Sy (a|¥)) =a’|¥)
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l. Definition and first properties
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l. Definition and first properties
 The Tomita operator of A(%) and A(%)’

Sy (@'])) = a|'P)
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THE MODULAR OPERATOR AND RELATIVE
ENTROPY IN QUANTUM FIELD THEOTY

l. Definition and first properties
 The Tomita operator of A(%) and A(%)’

Sy (@'])) = a|'P)

(a¥|Spa’'?) = (Pla'a™ |P) = (P|a"a’ |P) = (a'¥P | Sya?) = (Sya? |a'P)

= Sy =S5,

Sy (a|¥)) =a’|¥)




THE MODULAR OPERATOR AND RELATIVE
ENTROPY IN QUANTUM FIELD THEOTY

l. Definition and first properties
 The Tomita operator of A(%) and A(%)’

Sy (@'])) = a|'P)

(a¥|Spa’'?) = (Pla'a™ |P) = (P|a"a’ |P) = (a'¥P | Sya?) = (Sya? |a'P)

= Sy =S, (in their domain! )

Sy (a|¥)) =a’|¥)




THE MODULAR OPERATOR AND RELATIVE
ENTROPY IN QUANTUM FIELD THEOTY

Definition and first properties

The polar decomposition theorem: if A is a closed, densely
defined unbounded operator between complex Hilbert spaces,
then is has a (unique) polar decomposition A = U|A |, where |A]|
Is a (possibly unbounded) non-negative self-adjoint operator with
the same domain as A, and U is a partial isometry vanishing on
the orthogonal complement of the range Ran(|A |).

So the Tomita operator has a unique polar decomposition
Sy = JyAl?, where Jy is antiunitary and Al is Hermitian and

P
positive definite.

Ay = S} Sy

Sy (a|¥)) =a’|¥)




THE MODULAR OPERATOR AND RELATIVE
ENTROPY IN QUANTUM FIELD THEOTY

l. Definition and first properties

* The Ay is called the modular operator (usually unbounded)
* The Jy Is called the modular conjugation

o Syl|P)=S1¥)=1¥) = Ay|¥)=]|¥), for any function f,
J(Ag) |¥) =f(1)|Y).

Sy (a|¥)) =a’|¥)




THE MODULAR OPERATOR AND RELATIVE
ENTROPY IN QUANTUM FIELD THEOTY

l. Definition and first properties
 The modular operator and modular conjugation
1. Se=1 = JgAyJeAy* =1 = JuAyily = AG?
2. JiJy'AUAy) = A2 =1 AG!%. So they are both polar
decomposition of Ay "2, By the uniqueness of the polar
decomposition, Jg = 1
3. Si=S8] = AySy = JyAy'?, 50 Jy = Jy, Ay = Ay
4. Because JyAyJy = Ay', we have Jy f(Ay)Jy = f(AGY) for any function f

5. For example, when f(z) = z* (s € R), we have JgASJy = AL (s € R)

Sy (a|¥)) =a’|¥)







