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• Starting point: Consider a QFT in D-dimensional Minkowski 
spacetime , let  is the vacuum sector of the vacuum state 

 in the whole Hilbert space .


•   is quantum field (need not to be elementary), then the states 
 (  ) are dense in .

ℳD ℋ0
Ω ℋ

ϕ(x)
|Ψ ⃗f ⟩ ≡ ϕf1ϕf2⋯ϕfn |Ω⟩ ϕf ≡ ∫ dDxf(x)ϕ(x) ℋ0

I. Statement
THE REEH-SCHLIEDER THEOREM

ℳD



• Choosing smooth functions  supported in a small neighborhood 
of a Cauchy surface , 


• The states  also span a dense subspace of 
.


•

fi
Σ

|Ψ ⃗f ⟩ ≡ ϕf1ϕf2⋯ϕfn |Ω⟩
ℋ0

I. Statement
THE REEH-SCHLIEDER THEOREM

supp fi ≡ {x ∈ ℳD | fi(x) ≠ 0} ⊂ Σε ≡ {x ∈ ℳD min
z∈Σ

|x0 − z0 | < ε}

Σ, Σε

ℳD• This is a quantum theory version of the 
completeness of the initial value 
problem (Cauchy problem).


• We won’t prove it but a stronger result.



• The Reeh-Schlieder theorem (1961, “Bemerkungen zur 
unitäräquivalenz von lorentzinvarianten feldern”, Nuovo Cimento 
22, 1051-1068): 
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• The Reeh-Schlieder theorem (1961): for any open subset 
, the subspace spanned by , where 
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the upper half plane.
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• Because the Hamiltonian is bounded below by 0,  (as a 
function of one complex variable ) is a holomorphic function in 
the upper half plane.


•   is continuous as one approaches the real axis, and vanishes 
on a segment  in the real axis.


• In the upper half plane, we have
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• Because  vanishes on a segment  in the real axis, 
we can “move”  to  without any singularity. Thus,  is 
holomorphic in the upper half plane “plus ”.
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• Choosing different time-like vector , we know that  vanishes 
for any timelike direction .
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• Choosing different time-like vector , we know that  vanishes 
for any timelike direction .
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• Any point in  can be reached by a zigzag timelike path start 
from .


• So when ,  for any 
.
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• Then, define 
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= ⟨χ |ϕ(x1)⋯ϕ(xn−2)eiHuϕ(xn−1)e−iHueiHuϕ(xn)e−iHu |Ω⟩

= ⟨χ |ϕ(x1)⋯ϕ(xn−2)eiHuϕ(xn−1)ϕ(xn) |Ω⟩

• So when ,  
for any .

x1, ⋯, xn ∈ 𝒰 ⟨χ |ϕ(x1)⋯ϕ(xn−2)ϕ(x)ϕ(x + xn − xn−1) |Ω⟩ = 0
x ∈ ℳD



• Then, define 

II. Proof
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g2(u) ≡ ⟨χ |ϕ(x1)⋯ϕ(xn−1 + ut)ϕ(xn + ut) |Ω⟩

= ⟨χ |ϕ(x1)⋯ϕ(xn−2)eiHuϕ(xn−1)e−iHueiHuϕ(xn)e−iHu |Ω⟩
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• Use the same method, we can first push  (with  together) to 
everywhere in the Minkowski spacetime, and then use the 
method again pushing  alone to any point in the Minkowski 
spacetime.


• So when ,  for 
any .

xn−1 xn

xn

x1, ⋯, xn−2 ∈ 𝒰 ⟨χ |ϕ(x1)⋯ϕ(xn−2)ϕ(x)ϕ(y) |Ω⟩ = 0
x, y ∈ ℳD

• So when ,  
for any .
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• Proof with Wightman function


• There are holomorphic functions  in 
, which gives


• Edge of the Wedge Theorem (“契边定理”)


• With the Edge of the Wedge Theorem, see “PCT, Spin and 
Statistics, and All That” by R. F. Streater and A. S. Wightman, or 
the Chinese translation 《PCT，⾃旋统计及其他》.

W(ζ1, ⋯, ζn−1)
{(ζ1, ⋯, ζn−1) |ζj = ξj − iηj, ξj ∈ ℝ4, ηj ∈ V+}

II. Proof
THE REEH-SCHLIEDER THEOREM

𝒲(x1, x2, ⋯, xn) = W(x1 − x2, x2 − x3, ⋯, xn − xn−1)

𝒲(x1, x2, ⋯, xn) ≡ ⟨Ω |ϕ(x1)ϕ(x2)⋯ϕ(xn) |Ω⟩

W(ξ1, ξ2, ⋯, ξn−1) = lim
η1,⋯,ηn−1→0

W(ξ1 − iη1, ξ2 − iη2, ⋯, ξn−1 − iηn−1)

https://press.princeton.edu/books/paperback/9780691070629/pct-spin-and-statistics-and-all-that
https://press.princeton.edu/books/paperback/9780691070629/pct-spin-and-statistics-and-all-that
https://press.princeton.edu/books/paperback/9780691070629/pct-spin-and-statistics-and-all-that
https://press.princeton.edu/books/paperback/9780691070629/pct-spin-and-statistics-and-all-that
mailto:zhanghao@ihep.ac.cn


• Why vacuum? Only vacuum?


• Invariance condition is too strong.


• Holomorphic in  is enough for the proof.


• This is not a generic property for arbitrary states in , because 
the operator  is no longer unitary but unbounded 
when the spacetime -vector  have non-vanished imaginary 
part.

u

ℋ
exp(−icμPμ)

D cμ

III. Vectors of bounded energy momentum
THE REEH-SCHLIEDER THEOREM

e−iHu |Ω⟩ = |Ω⟩



• A little about the unbounded operator
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• The state  is not normalizable


• Generic property: an unbounded operator can not be defined on 
the whole Hilbert space.

H |ψ⟩



• A little about the unbounded operator


• Eigenvalue problem for unbounded self-adjoint operator: spectral 
theorem

III. Vectors of bounded energy momentum
THE REEH-SCHLIEDER THEOREM

̂A = ∫σ(A)
λ ̂dΠλ



• As unbounded self-adjoint operator(s), the generators of the 
translation action  have spectral in the future lightcone !


• This is an assumption of QFT.

Pμ V+

III. Vectors of bounded energy momentum
THE REEH-SCHLIEDER THEOREM

V−

V+



• For compact (so bounded) region  in , the state  is a 
state on which translation group acts holomorphically.


• Any state  can be approximated by a sequence  in 
which each state can be used instead of the vacuum state in the 
Reeh-Schlieder theorem.


• These states can be used to get the Reeh-Schlieder theorem in 
non-vacuum superselection sector.

S V+ ΠS |Ψ⟩

|Ψ⟩ {ΠSi
|Ψ⟩}

III. Vectors of bounded energy momentum
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E

p

S



• It is non-trivial to generalize the concept of vacuum and the 
Reeh-Schlieder theorem to a QFT in generic spacetime.


• For global hyperbolic spacetime and anti-de Sitter spacetime, 
there are some results.

III. Vectors of bounded energy momentum
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• Causal complement 
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• Another example
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• Causal complement 

IV. An important corollary
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𝒰

𝒰′ 

𝒰′ ≡ {z ∈ ℳD | ∀ x ∈ 𝒰, (x − z)2 < 0}
𝒰 ⊆ 𝒰′ ′ 



• Causality condition in QFT: let  be any operator supported in the 
spacetime region  (not necessarily constructed from a product 
of finitely many local operators), 

a
𝒰
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[ϕ(x), a] = 0, x ∈ 𝒰′ 

ℳD

𝒰
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• If  is an supported in the spacetime region  and annihilate the 
vacuum, , then for 

a 𝒰
a |Ω⟩ = 0 ∀ x1, ⋯, xn ∈ 𝒰′ 

IV. An important corollary
THE REEH-SCHLIEDER THEOREM

ℳD

𝒰

𝒰′ 

a ϕ(x1)⋯ϕ(xn) |Ω⟩ = ϕ(x1)⋯ϕ(xn) a |Ω⟩ = 0



• If  is an supported in the spacetime region  and annihilate the 
vacuum, , then for 

a 𝒰
a |Ω⟩ = 0 ∀ x1, ⋯, xn ∈ 𝒰′ 
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a ϕ(x1)⋯ϕ(xn) |Ω⟩ = ϕ(x1)⋯ϕ(xn) a |Ω⟩ = 0

• The Reeh-Schlieder theorem tells us that  are 
dense in the vacuum sector.


• Corollary:  in the vacuum sector.

ϕ(x1)⋯ϕ(xn) |Ω⟩

a = 0



• “Local algebra” of quantum field theory


•   is the algebra generated by the bounded self-adjoint 
operators of the observables which can be locally measured in 
the spacetime region .

𝔄(𝒰)

𝒰
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• If  , then  is called a cyclic vector for .𝔄(𝒰) |Ψ⟩ = ℋ0 |Ψ⟩ 𝔄(𝒰)

• If  , then  is called a separating 
vector for .

a |Ψ⟩ = 0, a ∈ 𝔄(𝒰) ⇒ a = 0 |Ψ⟩
𝔄(𝒰)



• If  is a cyclic vector for , and  vanishes , 
then because ,  vanishes a dense subset of , so it 
must be .


•  A cyclic vector for  is a separating vector for .

|Ψ⟩ 𝔄(𝒰) a′ ∈ 𝔄(𝒰′ ) |Ψ⟩
[a, a′ ] = 0 a′ ℋ0

0

⇒ 𝔄(𝒰) 𝔄(𝒰′ )
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ℳD

𝒰

𝒰′ 



• State—operator “corresponding”: every  defines a map from 
 to  by .

|Ψ⟩
𝔄(𝒰) ℋ0 fΨ : a ∈ 𝔄(𝒰) ↦ a |Ψ⟩ ∈ ℋ0

IV. An important corollary
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ℳD

𝒰

𝔄(𝒰)

|Ψ⟩

ℋ0

fΨ



• If , then  is a cyclic vector for .


• If , then  is a separating vector for .

im( fΨ) = ℋ0 |Ψ⟩ 𝔄(𝒰)

ker( fΨ) = 0 |Ψ⟩ 𝔄(𝒰)
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ℳD

𝒰

𝔄(𝒰)

|Ψ⟩

ℋ0

fΨ



• Reeh-Schlieder theorem  The vacuum state  is both cyclic 
and separating vector for local algebra  and  on any 
open subset  of the Minkowski spacetime.

⇒ |Ω⟩
𝔄(𝒰) 𝔄(𝒰′ )

𝒰
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ℳD

𝒰

𝔄(𝒰)

|Ψ⟩

ℋ0

fΨ



• An example of non-cyclic vector: (complex fermion field)


• For  , define .


• Because , we have    for any .


• So for any ,   can not be separating vector for .

f ∈ C∞(ℳD), supp f ⊂ 𝒰 ψf ≡ ∫ dDx f(x)ψ(x)

ψ2
f = 0 ψf (ψf |χ⟩) = 0 |χ⟩

|χ⟩ ψf |χ⟩ 𝒰

IV. An important corollary
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• An important corollary: “Nonpositivity of the Energy Density in 
Quantized Field Theories”, H. Epstein, V. Glaser, A. Jaffe, Nuovo 
Cimento 36 (1965) 1016–1022.

IV. An important corollary
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Vladimir Jurko Glaser

(1924/04/21-1984/01/22)

Arthur Michael Jaffe

(1937/12/22-)

Henri Epstein

?

https://link.springer.com/content/pdf/10.1007/BF02749799.pdf
https://link.springer.com/content/pdf/10.1007/BF02749799.pdf
https://link.springer.com/content/pdf/10.1007/BF02749799.pdf


• An important corollary:


• Local observable — Energy momentum 
tensor 


• If  (  ) vanishes 
vacuum, then (because vacuum is a 
separating vector) .


• That is not the case.


• So there must be some state  in , 

Tμν(x)

T00
f f ∈ C∞(ℳD), supp f ⊂ 𝒰

T00
f = 0

|χ⟩ ℋ0

IV. An important corollary
THE REEH-SCHLIEDER THEOREM

⟨χ |T00
f |Ω⟩ ≠ 0



• An important corollary:


• But the translation symmetry tells us


• So the matrix elements of operator  in 
the 2D subspace spanned by  
are

T00
f

{ |χ⟩, |Ω⟩}

IV. An important corollary
THE REEH-SCHLIEDER THEOREM

⟨Ω |T00
f |Ω⟩ = 0

( 0 b
b* 2d)



• An important corollary:


• It is easy to check
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T00
f |ψ⟩ = (d − d2 + |b |2 ) |ψ⟩

|ψ⟩ ∝ b* | χ⟩ − (d + d2 + |b |2 ) |Ω⟩

• The quantum fluctuation could lead to 
negative energy density in any finite 
spacetime region.
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V. Discussion
THE REEH-SCHLIEDER THEOREM

⟨Ω |M |Ω⟩ ≈ 0, M ∈ 𝔄(𝒰Moon)

∃ an ∈ 𝔄(𝒰lab), s.t. an |Ω⟩ → M |Ω⟩, 𝒰lab ⊂ 𝒰′ Moon

⇒ ⟨Ω |a†
nMan |Ω⟩ → 1, ∴ ⟨Ω |Ma†

nan |Ω⟩ → 1

• The “some operator”  is not a unitary operator!an



• “Behind-the-Moon-argument”


• If one modifies the quantum system with physical operation, 
which is realized by Hermitian Hamiltonian and leads to unitary 
evolution, it is not possible to make any change in observables in 
a spacelike separated region.
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nMan |Ω⟩ = ⟨Ω |Ma†

nan |Ω⟩ = ⟨Ω |M |Ω⟩
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• Correlation vs causality
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⟨Ω |Ma†
nan |Ω⟩ ≠ ⟨Ω |M |Ω⟩⟨Ω |a†

nan |Ω⟩
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is the proper time from x to y and  is a Bessel function of the first kind. The expression  means y causally
precedes x which, for Minkowski spacetime, means

 and 

This expression can be related to the vacuum expectation value of the commutator of the free scalar field operator,

where

is the commutator.

A contour going anti-clockwise under both poles gives the causal advanced propagator. This is zero if x-y is
spacelike or if x ⁰> y ⁰ (i.e. if y is to the past of x).

This choice of contour is equivalent to calculating the limit[6]

This expression can also be expressed in terms of the vacuum expectation value of the commutator of the free scalar
field. In this case,

A contour going under the left pole and over the right pole gives the Feynman propagator.

This choice of contour is equivalent to calculating the limit[7]

Here

Advanced propagator

Feynman propagator

• An example in textbooks — free field propagator
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• Finite-dimensional quantum system


•  and  are the  matrices acting on  and , 
respectively.
𝔄1 𝔄2 n × n ℋ1 ℋ2

V. Discussion
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ℋ = ℋ1 ⊗ ℋ2, dim ℋ1 = dim ℋ2 = n

⊗

Ψ =
n

∑
i, j=1

cij | i⟩ ⊗ | j⟩′ = tr
c11 c12 ⋯ c1n
c21 c22 ⋯ c2n

⋯
cn1 cn2 ⋯ cnn

|1⟩ ⊗ |1⟩′ |2⟩ ⊗ |1⟩′ ⋯ |n⟩ ⊗ |1⟩′ 

|1⟩ ⊗ |2⟩′ |2⟩ ⊗ |2⟩′ ⋯ |n⟩ ⊗ |2⟩′ 

⋯
|1⟩ ⊗ |n⟩′ |2⟩ ⊗ |n⟩′ ⋯ |n⟩ ⊗ |n⟩′ 



• Finite-dimensional quantum system


• If , and , we 

have

𝒜 ∈ 𝔄1, ℬ ∈ 𝔄2 𝒜 | i⟩ =
n

∑
j=1

| j⟩Aji, ℬ | i⟩′ =
n

∑
j=1

| j⟩′ Bji

V. Discussion
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⊗

{𝒜 ⊗ ℬ}Ψ =
n

∑
i, j=1

cij(𝒜 | i⟩) ⊗ (ℬ | j⟩′ ) =
n

∑
i, j,k,ℓ=1

cijAkiBℓj |k⟩ ⊗ |ℓ⟩′ 

C =

c11 c12 ⋯ c1n
c21 c22 ⋯ c2n

⋯
cn1 cn2 ⋯ cnn

→ ACBT



• Finite-dimensional quantum system


• Singular value decomposition theorem: any  complex matrix  
can be factorized as , where  is an  complex unitary 
matrix,  is an  rectangular diagonal matrix with non-
negative real numbers on the diagonal, and  is an  
complex unitary matrix.

m × n
UΣV* U m × m

Σ m × n
V n × n

V. Discussion
THE REEH-SCHLIEDER THEOREM

⊗



• Finite-dimensional quantum system


• Corollary (Schmidt decomposition): 
for any state , we can find an 
orthonormal basis of  and  an 
orthonormal basis of , s.t. 

Ψ
ℋ1
ℋ2

V. Discussion
THE REEH-SCHLIEDER THEOREM

⊗

Ψ =
n

∑
k=1

ck |k⟩ ⊗ |k⟩′ 

Erhard Schmidt

(1876/01/13-1959/12/06)



• Finite-dimensional quantum system
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• Finite-dimensional quantum system


• When will  be a cyclic and separating vector for  and ?Ψ 𝔄1 𝔄2

V. Discussion
THE REEH-SCHLIEDER THEOREM

⊗

𝔄1Ψ → A

c1 0 ⋯ 0
0 c2 ⋯ 0

⋯
0 0 ⋯ cn

A ∈ ℂn×n

•  is a cyclic (separating) vector for  ( ) 
.

Ψ 𝔄1 𝔄2
⇒ rank C = n (c1, ⋯, cn ≠ 0)



• Finite-dimensional quantum system


• If ,  can not be a cyclic and separating vector 
for both  and .


• Technically, the Hilbert space of the state vectors of the QFT can 
be factorized into neither , nor .


• In QFT, the entanglement entropy between adjacent regions has 
a universal UV divergence, independent of the states considered.

dim ℋ1 ≠ dim ℋ2 Ψ
𝔄1 𝔄2

ℋ𝒰 ⊗ ℋ𝒰′ ⊕ζ ℋζ
𝒰 ⊗ ℋζ

𝒰′ 

V. Discussion
THE REEH-SCHLIEDER THEOREM

⊗



• The local algebras (algebraic quantum field theory, AQFT)

V. The Local Algebra
THE REEH-SCHLIEDER THEOREM

Rudolf Haag

(1922/08/17-2016/01/05)

Daniel Kastler

(1926/03/04-2015/07/04)

Huzihiro Araki

荒⽊ 不⼆洋

(1932/07/28-)
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• The “local algebra”  consists of “all operators” supported in 
. What does it precisely mean? 


1. Simple operators: polynomials in smeared local fields;


2. If  is the domain of dependence of , then ;

𝔄(𝒰)
𝒰

̂𝒰 𝒰 𝔄( ̂𝒰 ) = 𝔄(𝒰)

V. The Local Algebra
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ℳD

𝒰

̂𝒰
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V. The Local Algebra
THE REEH-SCHLIEDER THEOREM

• Why “bounded”?


• There is a lot of trouble to define an algebra with unbounded 
operators.


• An observable measured within finite spacetime region can not 
touch the “unbounded” part.



V. The Local Algebra
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• Which “limit”?


• Weak limit versus strong limit:


- Weak limit: if for , then


- Strong limit: if , then

∀ |φ⟩, |ψ⟩ ∈ ℋ, ⟨φ |an |ψ⟩ → ⟨φ |a |ψ⟩

∀ |ψ⟩ ∈ ℋ, ∥an |ψ⟩ − a |ψ⟩∥ → 0

w − lim
n→∞

an = a

lim
n→∞

an = a



V. The Local Algebra
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• The strong limit condition is stronger than the weak limit 
condition.


• A strong limit must be a weak limit, and not vice versa.


• A counterexample: a sequence  on , defined by 
, then . But it 

is obviously that the strong limit does not exist ( ).

{an} ℓ2(ℂ)
an{c1, ⋯, ci, ⋯} = {0,⋯,0, c1, ⋯, ci, ⋯} w − lim

n→∞
an = 0

∥anξ∥ = ∥ξ∥

…… ……c1 c2 c3 cn
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• The strong limit condition is stronger than the weak limit 
condition.


• A strong limit must be a weak limit, and not vice versa.


• A counterexample: a sequence  on , defined by 
, then . But it 

is obviously that the strong limit does not exist ( ).

{an} ℓ2(ℂ)
an{c1, ⋯, ci, ⋯} = {0,⋯,0, c1, ⋯, ci, ⋯} w − lim

n→∞
an = 0

∥anξ∥ = ∥ξ∥

…… ……c1 c2 c3 cn
a1

…… ……c1 c2 c3 cn0
a2

……c1 c2 c3 cn00



• Many different topologies for operator algebra!


• Norm topology, strong operator topology, strong-*operator 
topology, -strong topology, -strong-*  topology, weak 
topology, weak operator topology, weak-*operator topology, 
-weak topology, -weak-*  topology…

σ σ
σ

σ
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THE REEH-SCHLIEDER THEOREM



V. The Local Algebra
THE REEH-SCHLIEDER THEOREM

• Physically, the weak limit seems to be more reasonable, since we 
“measure” an operator  by measuring the transition amplitude 

 induced by .


• The “local algebra”  consists of “all operators” supported in 
. What does it precisely mean? 


1. Simple operators: polynomials in smeared local fields;


2. Bounded operators made from  ;


3. And the “limit” points;


4. Closed under Hermitian conjugate.

a
⟨φ |a |ψ⟩ a

𝔄(𝒰)
𝒰

ϕf
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• *-algebra: von Neumann algebra (or W*-algebra, weak limit), C*-
algebra (strong limit).

Israïl Moyseyovich 
Gel'fand


(1913/09/02-2009/10/05)

Neumann János Lajos

(1903/12/28-1957/02/08)

Mark Aronovich 
Naimark


(1909/12/05-1978/12/30)



• Generic properties of von Neumann algebra


• The commutant of 


• The commutant  of any *-algebra  is a von Neumann algebra

𝔄 ∈ ℬ(ℋ)

𝔄′ 𝔄
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𝒰 𝒰α 𝔄(𝒰)
𝔄(𝒰α)

𝒰1 𝒰2
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• There are some theories, in 
which the Haag duality and 
the two postulates fail.
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第四章 局域观测量

在本章中，我们对于每个时空区域考虑所有可以在其中被测量的观测量构成的

集合，我们将讨论该集合的基本性质，特别是与真空态的关系。

4.1 局域观测量的一般性质

对观测量的每⼀次测量，都发⽣在某个有限的时空区域中。例如，⼀个空间上

限制在实验室区域 A、经历有限时间 T 测量到的观测量，可以被考虑为时空区域

T ×A 内测量的观测量。藉此，对于每个时空区域 D，定义所有可以其中进⾏测量

的观测量的集合 O(D) 是可能的。场论的本质，在于研究时空点与观测量之间的关

系。本书的关注点，在于研究关于每个时空区域 D 决定的观测量集合 O(D) 的理

论。作为出发点，在本节中，我们将以公理的形式展示 O(D) 满⾜的基本性质，并

逐⼀解释它们的物理意义。

我们的讨论，基于第⼆章和第三章中介绍的相对论性量⼦理论。因此，O(D)

是观测量构成的 C∗ 代数 A 的⼀个⼦集，相对论对称性由非齐次 Lorentz 群 P↑
+

给出，每个变换 g ∈P↑
+ 都被表示为 A 的⼀个自同构 αg。（Hilbert 空间及其上的

⼳正表示将在稍后我们讨论态的时候出现。）αg(Q) 被假定关于 g 连续。

关于 O(D)，我们做出如下四条基本假设。

局域观测量公理（D 是有限的时空区域）

1. 单调性（Monotone property）：若 D1 ⊃ D2，则 O(D1) ⊃ O(D2)。
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2. 协变性（Covariance）：对于 g = (a,Λ) ∈P↑
+，有 αgO(D) = O(gD)，其

中 gD = {Λx+ a; x ∈ D}。

3. 局域性（Locality）：如果 D1 与 D2 类空分隔，那么 O(D1) 与 O(D2) 对

易。

4. 生成性（Generating property）：∪DO(D) ⽣成作为观测量代数的 C∗ 代数

A。

下面，我们解释这些公理的物理意义。

1. 在特定时空区域 D2 中测量的观测量，在⼀个包含该区域的更⼤的区域 D1

中也被认为是可以测量的。因此，这是⼀条非常自然的公理。

2. 这条公理源自 1.8节中关于对称性的讨论、以及 3.3节中给出的相对论对称
性的意义，即，如果对⼀个在时空区域 D 中的观测量施以变换 αg，我们得到的是

在变换后的时空区域 gD 中测量的观测量。因此，αgO(D) ⊂ O(gD)。进⽽有

α−1
g O(gD) ⊂ O(g−1gD) = O(D)

成立，于是我们得到 αgO(D) = O(gD)。

3. 这条公理是关于 3.1节中提到的相对论因果性的。D1 与 D2 类空分隔的含

义是，对于任意 D1 中的点 x 和 D2 中的点 y，x− y 都类空。根据 3.1节中给出的
定义，这等价于说 D1 的因果补 D′

1 包含 D2。狭义相对论理论告诉我们，这时 D1

中的事件与 D2 中的事件互不⼲涉。因此，如果在区域 D1 和 D2 中都进⾏⼀个测

量操作，我们将得到与在两个区域分别进⾏测量相同的结果。这意味着 D1 中进⾏

的对观测量 O1 ∈ O(D1) 的测量与在 D2 中进⾏的对观测量 O2 ∈ O(D2) 的测量是

可以同时操作的，因此根据第 1.3节的讨论以及（2.1），观测量 Q1 与 Q2 对易。于

是我们就得到了断⾔ O(D1) 中算⼦与 O(D2) 中算⼦对易的局域性假设。

4. 这条假设意味着，我们只考虑可以在有界时空区域内测量的观测量。C∗ 代

数由它⽣成的含义是，我们考虑若⼲与在有界时空区域内能够被测量的观测量对应

的算⼦，构造它们的复系数多项式序列，并在范数拓扑下取极限；将所有通过这种

操作得到算⼦放在⼀起，我们将得到前面提到的 C∗ 代数。
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上述定义的含义为：对于 A 中的任意⼀个元素 A，态 ϕ 都指定了⼀个复数期

望值 ϕ(A)，且满⾜如下三个条件：

1. 线性性：对于 A1, A2 ∈ A 和 c1, c2 ∈ C

ϕ(c1A1 + c2A2) = c1ϕ(A1) + c2ϕ(A2).

2. 正定性：对于 A ∈ A

ϕ(A∗A) ! 0.

3. 归⼀性：
‖ϕ‖ ≡ sup{|ϕ(A)|; A ∈ A, ‖A‖ " 1} = 1. (2.34)

注意，如果 A 包含单位元 1A，归⼀化条件与

ϕ(1A) = 1 (2.35)

等价。（我们稍后会给出有关证明的要点。）

下面给出的重要的基础性定理断⾔，任意⼀个态都是适当表示下的⼀个⽮量

态。

定理 2.18
对于 C∗ 代数 A 上的任意⼀个态 ϕ，都存在⼀个 Hilbert 空间 Hϕ，A 在

Hϕ 上的⼀个表示 πϕ，和 Hϕ 中的⼀个单位⽮量 Ωϕ，满⾜如下两个条件：

1. 对于任意的 A ∈ A

ϕ(A) = (Ωϕ, πϕ(A)Ωϕ). (2.36)

2. Ωϕ 是表示 πϕ 的⼀个循环矢量（cyclic vector），也就是说

πϕ(A)Ωϕ ≡ {πϕ(A)Ωϕ; A ∈ A}

在 Hϕ 中是稠密的。
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满足这两条的三元组 (Hϕ, πϕ,Ωϕ)，作为幺正等价类是唯一的。因此，如果

存在另一个由 Hilbert 空间 H ′
ϕ、A 在 H ′

ϕ 上的表示 π′
ϕ 和 H ′

ϕ 中的矢量 Ω′
ϕ 组

成的三元组，满足条件（1）和（2），则一定存在满足

Uπϕ(A) = π′
ϕ(A)U （对所有的元素 A ∈ A） (2.37)

UΩϕ = Ω′
ϕ

的从 Hϕ 到 H ′
ϕ 的幺正映射 U。

这一定理，使我们在态的抽象定义 2.17，和量子力学中用到的态是 Hilbert 空
间中某个单位矢量给出的期望值的定义之间建立起某种联系。（稍后，我们将对与

密度矩阵的关系做更多的解释。）

⛊⹻㺆タ☨㻙㮔㙴⿁

假若定理成立。记

ξA ≡ πϕ(A)Ωϕ (A ∈ A),

我们现在来分析一下它们的性质。

（i）对于线性计算，我们有

cξA + dξB = cπϕ(A)Ωϕ + dπϕ(B)Ωϕ = πϕ(cA+ dB)Ωϕ = ξcA+dB,

也就是说，从 A ∈ A 到 ξA ∈H 的映射是线性的。

（ii）内积可以利用态 ϕ 表示

(ξA, ξB) = (πϕ(A)Ωϕ, πϕ(B)Ωϕ) = (Ωϕ, πϕ(A)
∗πϕ(B)Ωϕ)

= (Ωϕ, πϕ(A
∗B)Ωϕ) = ϕ(A∗B). (2.38)

（iii）矢量之间的相等定义为

ξA1 = ξA2 ⇔ ξA1 − ξA2 = ξA1−A2 = 0.

ξA = 0⇔ ‖ξA‖2 = (ξA, ξA) = ϕ(A∗A) = 0.
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• Tomita-Takesaki theory (富⽥-⽵崎理论, 1967-1970)
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• The Tomita operator: 


      let  be a cyclic and separating vector (e.g., the vacuum 
vector) for the local observable algebra  and its commutant 

, the Tomita operator for  is an antilinear operator  
defined by 


for .

|Ψ⟩
𝔄(𝒰)

𝔄(𝒰)′ |Ψ⟩ SΨ

∀ a ∈ 𝔄(𝒰)

I. Definition and first properties
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SΨ (a |Ψ⟩) = a† |Ψ⟩



• The Tomita operator

I. Definition and first properties

THE MODULAR OPERATOR AND RELATIVE 
ENTROPY IN QUANTUM FIELD THEOTY

SΨ (a |Ψ⟩) = a† |Ψ⟩

a |Ψ⟩ a† |Ψ⟩

SΨ



• The Tomita operator 

1.   is separating , the definition is consistent


2.   is cyclic  is defined on a dense subset of 


3. (Closable) For , if  exists, we can 
extend the Tomita operator with .


4.  


5.  

|Ψ⟩ ⇒ SΨ |0⟩ = 0

|Ψ⟩ ⇒ SΨ ℋ

an |Ψ⟩ → x, an ∈ 𝔄(𝒰) a†
n |Ψ⟩ → y

SΨx = y

S2
Ψ(a |Ψ⟩) = SΨ(SΨ(a |Ψ⟩)) = SΨ(a† |Ψ⟩) = a |Ψ⟩ ⇒ S2

Ψ = 1

SΨ |Ψ⟩ = |Ψ⟩
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• The Tomita operator 

1.   is separating , the definition is consistent


2.   is cyclic  is defined on a dense subset of 


3. (Closable) For , if  exists, we can 
extend the Tomita operator with .


4.  


5.  

|Ψ⟩ ⇒ SΨ |0⟩ = 0

|Ψ⟩ ⇒ SΨ ℋ

an |Ψ⟩ → x, an ∈ 𝔄(𝒰) a†
n |Ψ⟩ → y

SΨx = y

S2
Ψ(a |Ψ⟩) = SΨ(SΨ(a |Ψ⟩)) = SΨ(a† |Ψ⟩) = a |Ψ⟩ ⇒ S2

Ψ = 1

SΨ |Ψ⟩ = |Ψ⟩
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ENTROPY IN QUANTUM FIELD THEOTY

SΨ (a |Ψ⟩) = a† |Ψ⟩

WARNING: I use the notation  for the zero vector in the Hilbert space, 
and  for the vacuum vector. They are completely different concept. 

|0⟩
|Ω⟩
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• The Tomita operator of  and 𝔄(𝒰) 𝔄(𝒰)′ 
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⟨aΨ |S′ Ψa′ Ψ⟩ = ⟨Ψ |a†a′ † |Ψ⟩ = ⟨Ψ |a′ †a† |Ψ⟩ = ⟨a′ Ψ |SΨaΨ⟩ = ⟨SΨaΨ |a′ Ψ⟩

⇒ S′ Ψ = S†
Ψ (in their domain! )



• The polar decomposition theorem: if  is a closed, densely 
defined unbounded operator between complex Hilbert spaces, 
then is has a (unique) polar decomposition , where  
is a (possibly unbounded) non-negative self-adjoint operator with 
the same domain as , and  is a partial isometry vanishing on 
the orthogonal complement of the range .


• So the Tomita operator has a unique polar decomposition 
, where  is antiunitary and  is Hermitian and 

positive definite.


•  

A

A = U |A | |A |

A U
Ran( |A | )

SΨ = JΨΔ1/2
Ψ JΨ Δ1/2

Ψ

ΔΨ = S†
ΨSΨ
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• The  is called the modular operator (usually unbounded)


• The  is called the modular conjugation


•  , for any function , 
.

ΔΨ

JΨ

SΨ |Ψ⟩ = S†
Ψ |Ψ⟩ = |Ψ⟩ ⇒ ΔΨ |Ψ⟩ = |Ψ⟩ f

f(ΔΨ) |Ψ⟩ = f(1) |Ψ⟩
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SΨ (a |Ψ⟩) = a† |Ψ⟩



• The modular operator and modular conjugation 

1.   


2.  . So they are both polar 
decomposition of . By the uniqueness of the polar 
decomposition, 


3.  , so 


4. Because , we have  for any function 


5. For example, when , we have 

S2
Ψ = 1 ⇒ JΨΔ1/2

Ψ JΨΔ1/2
Ψ = 1 ⇒ JΨΔ1/2

Ψ JΨ = Δ−1/2
Ψ

J2
Ψ(J−1

Ψ Δ1/2
Ψ JΨ) = Δ−1/2

Ψ = 1 ⋅ Δ−1/2
Ψ

Δ−1/2
Ψ

J2
Ψ = 1

S′ Ψ = S†
Ψ = Δ1/2

Ψ JΨ = JΨΔ−1/2
Ψ J′ Ψ = JΨ, Δ′ Ψ = Δ−1

Ψ

JΨΔΨJΨ = Δ−1
Ψ JΨ f(ΔΨ)JΨ = f̄(Δ−1

Ψ ) f

f(z) = zis (s ∈ ℝ) JΨΔis
ΨJΨ = Δis

Ψ (s ∈ ℝ)
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