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• Bipartite quantum system
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⊗

ℋ = ℋ1 ⊗ ℋ2

a : ℋ1 → ℋ1, a ∈ 𝔄 a′ : ℋ2 → ℋ2, a ∈ 𝔄′ 

a ⊗ 1 : ℋ → ℋ, 1 ⊗ a′ : ℋ → ℋ

|ψ1⟩ ⊗ |ψ2⟩



• Cyclic and separating vectors for  and 


- SVD theorem , one could find out suitable 
orthonormal bases  of  and  of , which give


- A (linear) operator  in  acts on  as 

𝔄 𝔄′ 

⇒ ∀ Ψ ∈ ℋ
{ψi} ℋ1 {φj} ℋ2

a 𝔄 Ψ
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Ψ = ∑
k

ck |ψk⟩ ⊗ |φk⟩ ≡ ∑
k

ck |k, k⟩

(a ⊗ 1)Ψ = ∑
k

cka |k, k⟩ ≡ ∑
k

ckajk | j, k⟩
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- A (linear) operator  in  acts on  as 


-   is cyclic  for any  matrix , equation  
has solution, so  must be full-rank and .


-   is separating  is the unique solution of equation 
, so  must be full-rank and .

𝔄 𝔄′ 

a 𝔄 Ψ

Ψ ⇒ dim ℋ1 × dim ℋ2 M AC = M
C dim ℋ1 ⩾ dim ℋ2

Ψ ⇒ A = 0
AC = 0 C dim ℋ1 ⩽ dim ℋ2
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(a ⊗ 1)Ψ = ∑
k

cka |k, k⟩ ≡ ∑
k

ckajk | j, k⟩

Adim ℋ1×dim ℋ1
Cdim ℋ1×dim ℋ2

= (AC)dim ℋ1×dim ℋ2
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-   is a cyclic and separating vector of  and , iff for suitable 
orthonormal bases  of  and  of ,


   and  for all , and .


- Or equivalently,  is a non-degenerate diagonal square matrix. 

𝔄 𝔄′ 

Ψ 𝔄 𝔄′ 

{ψi} ℋ1 {φj} ℋ2

ck ≠ 0 k = 1,⋯, dim ℋ1 dim ℋ1 = dim ℋ2

C
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SΨ|Φ |α, i⟩ =
dα

c̄i
| i, α⟩

ΔΨ|Φ |α, i⟩ =
|dα |2

|ci |
2 |α, i⟩, JΨ|Φ |α, i⟩ =

cidα

c̄id̄α
| i, α⟩

• The relative operators ,  and 


• One can always pick the phases of  and  to ensure that the 
 and the  are all positive.


• In such a choice of the phases, 

SΨ|Φ ΔΨ|Φ JΨ|Φ

| i⟩ |α⟩
ci dα

JΨ|Φ |α, i⟩ = | i, α⟩
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• For example, the reduced density matrices


• They are invertible iff the  are all nonzero.
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• From pure states to mixed states (inverse of purification)


• Partial trace over  or :


• The reduced density matrices for  and :

ℋ1 ℋ2

Ψ Φ

Tr1�̂� = ∑
i

⟨i, ⋅ | �̂� | i, ⋅ ⟩

̂ρ1 = ∑
i

|ci |
2 |ψi⟩⟨ψi | , ̂ρ2 = ∑

i

|ci |
2 |φi⟩⟨φi |

̂σ1 = ∑
α

|dα |2 | ψ̃α⟩⟨ψ̃α | , ̂σ2 = ∑
α

|dα |2 | φ̃α⟩⟨φ̃α |
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2

|cj |
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|ci |
2

|cj |
2 |ψi⟩⟨ψi | ⊗ |φj⟩⟨φj |

= ̂ρ1 ⊗ ̂ρ−1
2

= ∑
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( |ci |
2 |ψi⟩⟨ψi | ) ⊗ ( |cj |

−2 |φj⟩⟨φj | ) = (∑
i
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ΔΨ|Φ = ΔΨ|Φ ∑
α,i

|α, i⟩⟨α, i | = ∑
α,i

|dα |2

|ci |
2 |α, i⟩⟨α, i | = ∑

α,i

|dα |2

|ci |
2 | ψ̃α⟩⟨ψ̃α | ⊗ |φi⟩⟨φi |

= ∑
α,i

( |dα |2 | ψ̃α⟩⟨ψ̃α | ) ⊗ ( |ci |
−2 |φi⟩⟨φi | ) = (∑

α

|dα |2 | ψ̃α⟩⟨ψ̃α |) (∑
i

|ci |
−2 |φi⟩⟨φi |)

= ̂σ1 ⊗ ̂ρ−1
2
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• From pure states to mixed states (inverse of purification)


• Rewriting the relative modular operator with reduced density 
matrices:
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• The “representation matrices” of modular operators


• The cyclic and separating vector  and the induced antiunitary 
modular conjugation  gives a special linear 
bijective from  to , so they identifies  with the dual of 
the .

Ψ
JΨ | i, j⟩ = | j, i⟩

ℋ1 ℋ2 ℋ2
ℋ1
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• The “representation matrices” of modular operators


• The antiunitary modular conjugation
JΨ | i, j⟩ = | j, i⟩

Ξ =
n

∑
i, j=1

cij | i, j⟩ = tr

c11 c12 ⋯ c1n
c21 c22 ⋯ c2n
⋮ ⋮ ⋱ ⋮

cn1 cn2 ⋯ cnn

|1, 1⟩ |2, 1⟩ ⋯ |n, 1⟩
|1, 2⟩ |2, 2⟩ ⋯ |n, 2⟩

⋮ ⋮ ⋱ ⋮
|1, n⟩ |2, n⟩ ⋯ |n, n⟩

JΨΞ =
n

∑
i, j=1

c̄ij | j, i⟩ = tr

c̄11 c̄21 ⋯ c̄n1
c̄12 c̄22 ⋯ c̄n2
⋮ ⋮ ⋱ ⋮

c̄1n c̄2n ⋯ c̄nn

|1, 1⟩ |2, 1⟩ ⋯ |n, 1⟩
|1, 2⟩ |2, 2⟩ ⋯ |n, 2⟩

⋮ ⋮ ⋱ ⋮
|1, n⟩ |2, n⟩ ⋯ |n, n⟩
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